logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

In Vivo NMR Spectroscopy: Principles and Techniques

In Vivo NMR Spectroscopy: Principles and Techniques (Hardcover, 3)

Robin A. De Graaf (지은이)
  |  
John Wiley and Sons Ltd
2019-03-11
  |  
276,170원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
알라딘 207,120원 -25% 0원 4,150원 202,970원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
로딩중

e-Book

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

해외직구

책 이미지

In Vivo NMR Spectroscopy: Principles and Techniques

책 정보

· 제목 : In Vivo NMR Spectroscopy: Principles and Techniques (Hardcover, 3) 
· 분류 : 외국도서 > 과학/수학/생태 > 과학 > 분광학/광선분석
· ISBN : 9781119382546
· 쪽수 : 584쪽

목차

Preface

List of Abbreviations and Symbols

About the companion website

1 Principles of NMR

1.1 Introduction

1.2 Classical magnetic moments

1.3 Nuclear magnetization

1.4 Nuclear induction

1.5 Rotating frame of reference

1.6 Transverse T2 and T2* relaxation

1.7 Bloch equations

1.8 Fourier transform NMR

1.9 Chemical shift

1.10 Digital NMR

1.10.1 Analog-to-digital conversion

1.10.2 Signal averaging

1.10.3 Digital Fourier transformation

1.10.4 Zero filling

1.10.5 Apodization

1.11 Quantum description of NMR

1.12 Scalar coupling

1.13 Chemical and magnetic equivalence

1.14 Exercises

References

2 In Vivo NMR Spectroscopy – Static Aspects

2.1 Introduction

2.2 Proton NMR Spectroscopy

2.2.1 Acetate (Ace)

2.2.2 N-Acetyl Aspartate (NAA)

2.2.3 N-Acetyl Aspartyl Glutamate (NAAG)

2.2.4 Adenosine Triphosphate (ATP)

2.2.5 Alanine (Ala)

2.2.6 g-Aminobutyric Acid (GABA)

2.2.7 Ascorbic Acid (Asc)

2.2.8. Aspartic Acid (Asp)

2.2.9 Branched-chain amino acids (isoleucine, leucine and valine)

2.2.10 Choline-Containing Compounds (tCho)

2.2.11 Creatine (Cr) and Phosphocreatine (PCr)

2.2.12 Ethanol

2.2.13 Ethanolamine (EA) and Phosphorylethanolamine (PE)

2.2.14 Glutamate (Glu)

2.2.15 Glutamine (Gln)

2.2.16 Glutathione (GSH)

2.2.17 Glycerol

2.2.18 Glycine

2.2.19 Glycogen

2.2.20 Histidine

2.2.21 Homocarnosine

2.2.22 b-Hydoxybutyrate (BHB)

2.2.23 2-Hydroxyglutarate (2HG)

2.2.24 Myo-Inositol (mI) and scyllo-Inositol (sI)

2.2.25 Lactate (Lac)

2.2.26 Macromolecules

2.2.27 Nicotinamide Adenine Dinucleotide (NAD+)

2.2.28 Phenylalanine

2.2.29 Pyruvate

2.2.30 Serine

2.2.31 Succinate

2.2.32 Taurine (Tau)

2.2.33 Threonine (Thr)

2.2.34 Tryptophan (Trp)

2.2.35 Tyrosine (Tyr)

2.2.36 Water

2.2.37 Non-cerebral metabolites

2.2.38 Carnitine and acetyl-carnitine

2.2.39 Carnosine

2.2.40 Citric Acid

2.2.41 Deoxymyoglobin (DMb)

2.2.42 Lipids

2.2.43 Spermine and polyamines

2.3 Phosphorus-31 NMR spectroscopy

2.3.1 Chemical shifts

2.3.2 Intracellular pH

2.4 Carbon-13 NMR spectroscopy

2.4.1 Chemical shifts

2.5 Sodium-23 NMR spectroscopy

2.6 Fluorine-19 NMR spectroscopy

2.7 In vivo NMR on other non-proton nuclei

2.8 Exercises

References

3 In Vivo NMR Spectroscopy – Dynamic Aspects

3.1 Introduction

3.2 Relaxation

3.2.1 General principles of dipolar relaxation

3.2.2 Nuclear Overhauser effect

3.2.3 Alternative relaxation mechanisms

3.2.4 Effects of T1 relaxation

3.2.5 Effects of T2 relaxation

3.2.6 Measurement of T1 and T2 relaxation

3.2.7 In vivo relaxation

3.3 Magnetization transfer

3.3.1 Principles of magnetization transfer

3.3.2 Magnetization transfer methods

3.3.3 Multiple exchange reactions

3.3.4 Magnetization transfer contrast (MTC)

3.3.5 Chemical exchange saturation transfer (CEST)

3.4 Diffusion

3.4.1 Principles of diffusion

3.4.2 Diffusion and NMR

3.4.3 Anisotropic diffusion

3.4.4 Restricted diffusion

3.5 Dynamic NMR of isotopically-enriched substrates

3.5.1 General principles and setup

3.5.2 Metabolic modeling

3.5.3 Thermally polarized dynamic 13C NMR spectroscopy

3.5.4 Hyperpolarized dynamic 13C NMR spectroscopy

3.5.5 Deuterium metabolic imaging

3.6 Exercises

References

4 Magnetic Resonance Imaging

4.1 Introduction

4.2 Magnetic field gradients

4.3 Slice selection

4.4 Frequency encoding

4.4.1 Principle

4.4.2 Echo formation

4.5 Phase encoding

4.6 Spatial frequency space

4.7 Fast MRI sequences

4.7.1 Reduced TR methods

4.7.2 Rapid k-space traversal

4.7.3 Parallel MRI

4.8 Contrast in MRI

4.8.1 T1 and T2 relaxation mapping

4.8.2 Magnetic field B0 mapping

4.8.3 Magnetic field B1 mapping

4.8.4 Alternative image contrast mechanisms

4.8.5 Functional MRI

4.9 Exercises

References

5 Radiofrequency Pulses

5.1 Introduction

5.2 Square RF pulses

5.3 Selective RF pulses

5.3.1 Fourier-transform-based RF pulses

5.3.2 RF pulse characteristics

5.3.3 Optimized RF pulses

5.3.4 Multi-frequency RF pulses

5.4 Composite RF pulses

5.5 Adiabatic RF pulses

5.5.1 Rotating frame of reference

5.5.2 Adiabatic condition

5.5.3 Modulation functions

5.5.4 AFP refocusing

5.5.5 Adiabatic plane rotation of arbitrary nutation angle

5.6 Multi-dimensional RF pulses

5.7 Spectral-spatial RF pulses

5.8 Exercises

References

6 Single Volume Localization and Water Suppression

6.1 Introduction

6.2 Single-volume localization

6.2.1 Image-selected in vivo spectroscopy (ISIS)

6.2.2 Chemical shift displacement

6.2.3 Coherence selection

6.2.4 Stimulated echo acquisition mode (STEAM)

6.2.5 Point resolved spectroscopy (PRESS)

6.2.6 Localization by adiabatic selective refocusing (LASER)

6.3 Water suppression

6.3.1 Binomial and related pulse sequences

6.3.2 Frequency selective excitation

6.3.3 Frequency selective refocusing

6.3.4 Relaxation based methods

6.3.5 Non-water-suppressed NMR spectroscopy

6.4 Exercises

References

7 Spectroscopic Imaging and Multivolume Localization

7.1 Introduction

7.2 Principles of MR spectroscopic imaging

7.3 K-space description of MRSI

7.4 Spatial resolution in MRSI

7.5 Temporal resolution in MRSI

7.5.1 Conventional methods

7.5.2 Methods based on fast MRI

7.5.3 Methods based on prior knowledge

7.6 Lipid suppression

7.6.1 Relaxation based methods

7.6.2 Inner volume selection (IVS) and volume pre-localization

7.6.3 Outer volume suppression (OVS)

7.7 MR spectroscopic image processing and display

7.8 Multi-volume localization

7.8.1 Hadamard localization

7.8.2 Sequential multi-volume localization

7.9 Exercises

References

8 Spectral Editing and 2D NMR

8.1 Introduction

8.2 Quantitative descriptions of NMR

8.2.1 Density matrix formalism

8.2.2 Classical vector model

8.2.3 Correlated vector model

8.2.4 Product operator formalism

8.3 Scalar evolution

8.4 J-difference editing

8.4.1 Principle

8.4.2 Practical considerations

8.4.3 GABA, 2HG and lactate

8.5 Multiple quantum coherence editing

8.6 Spectral editing alternatives

8.7 Heteronuclear spectral editing

8.7.1 Proton-observed, carbon-edited (POCE) MRS

8.7.2 Polarization transfer – INEPT and DEPT

8.8 Broadband decoupling

8.9 Sensitivity

8.10 Two-dimensional NMR spectroscopy

8.10.1 Correlation spectroscopy (COSY)

8.10.2 J-resolved spectroscopy

8.10.3 In vivo 2D NMR methods

8.11 Exercises

References

9. Spectral Quantification

9.1 Introduction

9.2 Data acquisition

9.3 Data pre-processing

9.3.1 Phased-array coil combination

9.3.2 Phasing and frequency alignment

9.3.3 Line shape correction

9.3.4 Removal of residual water

9.3.5 Baseline correction

9.4 Data quantification

9.4.1 Time- and frequency-domain parameters

9.4.2 Prior knowledge

9.4.3 Spectral fitting algorithms

9.4.4 Error estimation

9.5 Data calibration

9.5.1 Internal concentration reference

9.5.2 External concentration reference

9.5.3 Phantom replacement concentration reference

9.6 Exercises

References

10 Hardware

10.1 Introduction

10.2 Magnets

10.3 Magnetic field homogeneity

10.3.1 Origins of magnetic field inhomogeneity

10.3.2 Effects of magnetic field inhomogeneity

10.3.3 Principles of spherical harmonic shimming

10.3.4 Practical spherical harmonic shimming

10.3.5 Alternative shimming strategies

10.4 Magnetic field gradients

10.4.1 Eddy currents

10.4.2 Pre-emphasis

10.4.3 Active shielding

10.5 Radiofrequency (RF) coils

10.5.1 Electrical circuit analysis

10.5.2 RF coil performance

10.5.3 Spatial field properties

10.5.4 Principle of reciprocity

10.5.5 Parallel transmission

10.5.6 RF power and specific absorption rate (SAR)

10.5.7 Specialized RF coils

10.6 Complete MR system

10.6.1 RF transmission

10.6.2 Signal reception

10.6.3 Quadrature detection

10.6.4 Dynamic range

10.6.5 Gradient and shim systems

10.7 Exercises

References

Appendix

Index

저자소개

Robin A. De Graaf (지은이)    정보 더보기
펼치기
이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책