책 이미지
책 정보
· 분류 : 외국도서 > 과학/수학/생태 > 수학 > 확률과 통계 > 일반
· ISBN : 9781118735787
· 쪽수 : 480쪽
· 출판일 : 2015-08-24
목차
List of Figures xv
List of Tables xvii
Foreword to the First Edition xix
Preface to the Second Edition xxiii
Preface to the First Edition xxvii
1 *Introduction 1
1.1 What is a Small Area? 1
1.2 Demand for Small Area Statistics, 3
1.3 Traditional Indirect Estimators, 4
1.4 Small Area Models, 4
1.5 Model-Based Estimation, 5
1.6 Some Examples, 6
2 Direct Domain Estimation 9
2.1 Introduction, 9
2.2 Design-Based Approach, 10
2.3 Estimation of Totals, 11
2.4 Domain Estimation, 16
2.5 Modified GREG Estimator, 21
2.6 Design Issues, 23
2.7 *Optimal Sample Allocation for Planned Domains, 26
2.8 Proofs, 32
3 Indirect Domain Estimation 35
3.1 Introduction, 35
3.2 Synthetic Estimation, 36
3.3 Composite Estimation, 57
3.4.1 Common Weight, 63
3.5 Proofs, 71
4 Small Area Models 75
4.1 Introduction, 75
4.2 Basic Area Level Model, 76
4.3 Basic Unit Level Model, 78
4.4 Extensions: Area Level Models, 81
4.5 Extensions: Unit Level Models, 88
4.6 Generalized Linear Mixed Models, 92
5 Empirical Best Linear Unbiased Prediction (EBLUP): Theory 97
5.1 Introduction, 97
5.2 General Linear Mixed Model, 98
5.3 Block Diagonal Covariance Structure, 108
5.4 *Model Identification and Checking, 111
5.5 *Software, 118
6 Empirical Best Linear Unbiased Prediction (EBLUP): Basic Area Level Model 123
6.1 EBLUP Estimation, 123
6.2 MSE Estimation, 136
6.3 *Robust Estimation in the Presence of Outliers, 146
6.4 *Practical Issues, 148
6.5 *Software, 169
7 Basic Unit Level Model 173
7.1 EBLUP Estimation, 173
7.2 MSE Estimation, 179
7.3 *Applications, 186
7.4 *Outlier Robust EBLUP Estimation, 193
7.5 *M-Quantile Regression, 200
7.6 *Practical Issues, 205
7.7 *Software, 227
7.8 *Proofs, 231
8 EBLUP: Extensions 235
8.1 *Multivariate Fay–Herriot Model, 235
8.2 Correlated Sampling Errors, 237
8.3 Time Series and Cross-Sectional Models, 240
8.4 *Spatial Models, 248
8.5 *Two-Fold Subarea Level Models, 251
8.6 *Multivariate Nested Error Regression Model, 253
8.7 Two-Fold Nested Error Regression Model, 254
8.8 *Two-Level Model, 259
8.9 *Models for Multinomial Counts, 261
8.10 *EBLUP for Vectors of Area Proportions, 262
8.11 *Software, 264
9 Empirical Bayes (EB) Method 269
9.1 Introduction, 269
9.2 Basic Area Level Model, 270
9.3 Linear Mixed Models, 287
9.4 *EB Estimation of General Finite Population Parameters, 289
9.5 Binary Data, 298
9.6 Disease Mapping, 308
9.7 *Design-Weighted EB Estimation: Exponential Family Models, 313
9.8 Triple-Goal Estimation, 315
9.9 Empirical Linear Bayes, 319
9.10 Constrained LB, 324
9.11 *Software, 325
9.12 Proofs, 330
10 Hierarchical Bayes (HB) Method 333
10.1 Introduction, 333
10.2 MCMC Methods, 335
10.3 Basic Area Level Model, 347
10.4 *Unmatched Sampling and Linking Area Level Models, 356
10.5 Basic Unit Level Model, 362
10.6 General ANOVA Model, 368
10.7 *HB Estimation of General Finite Population Parameters, 369
10.8 Two-Level Models, 374
10.9 Time Series and Cross-Sectional Models, 377
10.10 Multivariate Models, 381
10.11 Disease Mapping Models, 383
10.12 *Two-Part Nested Error Model, 388
10.13 Binary Data, 389
10.14 *Missing Binary Data, 397
10.15 Natural Exponential Family Models, 398
10.16 Constrained HB, 399
10.17 *Approximate HB Inference and Data Cloning, 400
10.18 Proofs, 402
References 405
Author Index 431
Subject Index 437















