통합
제목
저자
외국
ISBN
목차
출판
x
BOOK
PRICE.co.kr
책, 도서 가격비교 사이트
베스트셀러
알라딘
교보문고
Yes24
신간도서
알라딘
교보문고
Yes24
국내도서
가정/요리/뷰티
건강/취미/레저
경제경영
고등학교참고서
고전
과학
달력/기타
대학교재/전문서적
만화
사회과학
소설/시/희곡
수험서/자격증
어린이
에세이
여행
역사
예술/대중문화
외국어
유아
인문학
자기계발
잡지
전집/중고전집
종교/역학
좋은부모
중학교참고서
청소년
초등학교참고서
컴퓨터/모바일
외국도서
가정/원예/인테리어
가족/관계
건강/스포츠
건축/디자인
게임/토이
경제경영
공예/취미/수집
교육/자료
기술공학
기타 언어권 도서
달력/다이어리/연감
대학교재
독일 도서
만화
법률
소설/시/희곡
수험서
스페인 도서
어린이
언어학
에세이
여행
역사
예술/대중문화
오디오북
요리
유머
의학
인문/사회
일본 도서
자기계발
자연과학
전기/자서전
종교/명상/점술
중국 도서
청소년
컴퓨터
한국관련도서
해외잡지
ELT/어학/사전
내책판매
인기 검색어
일간
|
주간
|
월간
1
김동식
2
인텔리전스
3
스마트 전산응용건축제도기능사 필기
4
dragonheart
5
ncs 문제해결능력 직업기초능력
실시간 검색어
9781804612989
노랑무늬
20세기소년
외국 시
노가다 김씨, 자동사냥으로 꿀 빱니다
검색가능 서점
도서목록 제공
알라딘,
영풍문고,
교보문고
💡
"9781804612989"
를 찾으셨나요?
"9781804612989"
(으)로 1개의 도서가 검색 되었습니다.
Causal Inference and Discovery in Python (Unlock the secrets of modern causal machine learning with DoWhy, EconML, PyTorch and more)
Molak, Aleksander | Packt Publishing
46,000원 | 20230801 | 9781804612989
Demystify causal inference and casual discovery by uncovering causal principles and merging them with powerful machine learning algorithms for observational and experimental data Purchase of the print or Kindle book includes a free PDF eBook Key Features Examine Pearlian causal concepts such as structural causal models, interventions, counterfactuals, and more Discover modern causal inference techniques for average and heterogenous treatment effect estimation Explore and leverage traditional and modern causal discovery methods Book Description Causal methods present unique challenges compared to traditional machine learning and statistics. Learning causality can be challenging, but it offers distinct advantages that elude a purely statistical mindset. Causal Inference and Discovery in Python helps you unlock the potential of causality. You’ll start with basic motivations behind causal thinking and a comprehensive introduction to Pearlian causal concepts, such as structural causal models, interventions, counterfactuals, and more. Each concept is accompanied by a theoretical explanation and a set of practical exercises with Python code. Next, you’ll dive into the world of causal effect estimation, consistently progressing towards modern machine learning methods. Step-by-step, you’ll discover Python causal ecosystem and harness the power of cutting-edge algorithms. You’ll further explore the mechanics of how “causes leave traces” and compare the main families of causal discovery algorithms. The final chapter gives you a broad outlook into the future of causal AI where we examine challenges and opportunities and provide you with a comprehensive list of resources to learn more. What you will learn Master the fundamental concepts of causal inference Decipher the mysteries of structural causal models Unleash the power of the 4-step causal inference process in Python Explore advanced uplift modeling techniques Unlock the secrets of modern causal discovery using Python Use causal inference for social impact and community benefit Who this book is for This book is for machine learning engineers, data scientists, and machine learning researchers looking to extend their data science toolkit and explore causal machine learning. It will also help developers familiar with causality who have worked in another technology and want to switch to Python, and data scientists with a history of working with traditional causality who want to learn causal machine learning. It’s also a must-read for tech-savvy entrepreneurs looking to build a competitive edge for their products and go beyond the limitations of traditional machine learning.
가격비교
1
최근 본 책