logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Impact Evaluation in Firms and Organizations: With Applications in R and Python

Impact Evaluation in Firms and Organizations: With Applications in R and Python (Paperback)

Martin Huber (지은이)
The MIT Press
74,500원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
59,600원 -20% 0원
2,980원
56,620원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Impact Evaluation in Firms and Organizations: With Applications in R and Python
eBook 미리보기

책 정보

· 제목 : Impact Evaluation in Firms and Organizations: With Applications in R and Python (Paperback) 
· 분류 : 외국도서 > 경제경영 > 경제학/경제일반 > 계량경제학
· ISBN : 9780262552929
· 쪽수 : 160쪽
· 출판일 : 2025-08-05

목차

1 Introduction
2 Basics of impact evaluation
2.1 The fundamental problem of impact evaluation
2.2 Analyzing the impact: characterization and assessment
2.3 The problem of comparing apples to oranges
3 Experiments (A/B testing)
3.1 Comparing apples to apples
3.2 Behavioral assumptions and methods for analyzing experiments
3.3 Multiple interventions
3.4 Use cases in R
3.5 Use cases in Python
4 Selection on observables: aim to compare apples with apples
4.1 Making groups comparable in observed characteristics
4.2 Behavioral assumptions
4.3 Methods for impact evaluation
4.4 Use cases in R
4.5 Use cases in Python
5 Causal machine learning
5.1 Motivating causal machine learning
5.2 Elements of causal machine learning
5.3 A brief introduction to several machine learning algorithms
5.4 Effect heterogeneity and optimal policy learning
5.5 Use cases in R
5.6 Use cases in Python
6 Instrumental variables
6.1 Instruments and complier effects
6.2 Behavioral assumptions
6.3 Use cases in R
7 Use cases in Python
8 Regression discontinuity designs
8.1 Sharp and fuzzy regression discontinuity designs
8.2 Behavioral assumptions and methods
8.3 Use cases in R
8.4 Use cases in Python
9 Difference-in-Differences
9.1 Difference-in-Differences and the impact in the treatment group
9.2 Behavioral assumptions and extensions
9.3 Use cases in R
9.4 Use cases in Python
10 Synthetic controls
10.1 Impact evaluation when a single unit receives the intervention
10.2 Behavioral assumptions and variants
10.3 Use cases in R
11 Use cases in Python
12 Conclusion

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책