logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Markov Chain Monte Carlo in Practice

Markov Chain Monte Carlo in Practice (Hardcover)

W. R. Gilks, S. Richardson, D. J. Spiegelhalter (엮은이)
Chapman & Hall
329,870원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
270,490원 -18% 0원
13,530원
256,960원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Markov Chain Monte Carlo in Practice
eBook 미리보기

책 정보

· 제목 : Markov Chain Monte Carlo in Practice (Hardcover) 
· 분류 : 외국도서 > 과학/수학/생태 > 수학 > 확률과 통계 > 일반
· ISBN : 9780412055515
· 쪽수 : 512쪽
· 출판일 : 1995-12-01

목차

INTRODUCING MARKOV CHAIN MONTE CARLO
Introduction
The Problem
Markov Chain Monte Carlo
Implementation
Discussion
HEPATITIS B: A CASE STUDY IN MCMC METHODS
Introduction
Hepatitis B Immunization
Modelling
Fitting a Model Using Gibbs Sampling
Model Elaboration
Conclusion
MARKOV CHAIN CONCEPTS RELATED TO SAMPLING ALGORITHMS
Markov Chains
Rates of Convergence
Estimation
The Gibbs Sampler and Metropolis-Hastings Algorithm
INTRODUCTION TO GENERAL STATE-SPACE MARKOV CHAIN THEORY
Introduction
Notation and Definitions
Irreducibility, Recurrence, and Convergence
Harris Recurrence
Mixing Rates and Central Limit Theorems
Regeneration
Discussion
FULL CONDITIONAL DISTRIBUTIONS
Introduction
Deriving Full Conditional Distributions
Sampling from Full Conditional Distributions
Discussion
STRATEGIES FOR IMPROVING MCMC
Introduction
Reparameterization
Random and Adaptive Direction Sampling
Modifying the Stationary Distribution
Methods Based on Continuous-Time Processes
Discussion
IMPLEMENTING MCMC
Introduction
Determining the Number of Iterations
Software and Implementation
Output Analysis
Generic Metropolis Algorithms
Discussion
INFERENCE AND MONITORING CONVERGENCE
Difficulties in Inference from Markov Chain Simulation
The Risk of Undiagnosed Slow Convergence
Multiple Sequences and Overdispersed Starting Points
Monitoring Convergence Using Simulation Output
Output Analysis for Inference
Output Analysis for Improving Efficiency
MODEL DETERMINATION USING SAMPLING-BASED METHODS
Introduction
Classical Approaches
The Bayesian Perspective and the Bayes Factor
Alternative Predictive Distributions
How to Use Predictive Distributions
Computational Issues
An Example
Discussion
HYPOTHESIS TESTING AND MODEL SELECTION
Introduction
Uses of Bayes Factors
Marginal Likelihood Estimation by Importance Sampling
Marginal Likelihood Estimation Using Maximum Likelihood
Application: How Many Components in a Mixture?
Discussion
Appendix: S-PLUS Code for the Laplace-Metropolis Estimator
MODEL CHECKING AND MODEL IMPROVEMENT
Introduction
Model Checking Using Posterior Predictive Simulation
Model Improvement via Expansion
Example: Hierarchical Mixture Modelling of Reaction Times
STOCHASTIC SEARCH VARIABLE SELECTION
Introduction
A Hierarchical Bayesian Model for Variable Selection
Searching the Posterior by Gibbs Sampling
Extensions
Constructing Stock Portfolios With SSVS
Discussion
BAYESIAN MODEL COMPARISON VIA JUMP DIFFUSIONS
Introduction
Model Choice
Jump-Diffusion Sampling
Mixture Deconvolution
Object Recognition
Variable Selection
Change-Point Identification
Conclusions
ESTIMATION AND OPTIMIZATION OF FUNCTIONS
Non-Bayesian Applications of MCMC
Monte Carlo Optimization
Monte Carlo Likelihood Analysis
Normalizing-Constant Families
Missing Data
Decision Theory
Which Sampling Distribution?
Importance Sampling
Discussion
STOCHASTIC EM: METHOD AND APPLICATION
Introduction
The EM Algorithm
The Stochastic EM Algorithm
Examples
GENERALIZED LINEAR MIXED MODELS
Introduction
Generalized Linear Models (GLMs)
Bayesian Estimation of GLMs
Gibbs Sampling for GLMs
Generalized Linear Mixed Models (GLMMs)
Specification of Random-Effect Distributions
Hyperpriors and the Estimation of Hyperparameters
Some Examples
Discussion
HIERARCHICAL LONGITUDINAL MODELLING
Introduction
Clinical Background
Model Detail and MCMC Implementation
Results
Summary and Discussion
MEDICAL MONITORING
Introduction
Modelling Medical Monitoring
Computing Posterior Distributions
Forecasting
Model Criticism
Illustrative Application
Discussion
MCMC FOR NONLINEAR HIERARCHICAL MODELS
Introduction
Implementing MCMC
Comparison of Strategies
A Case Study from Pharmacokinetics-Pharmacodynamics
Extensions and Discussion
BAYESIAN MAPPING OF DISEASE
Introduction
Hypotheses and Notation
Maximum Likelihood Estimation of Relative Risks
Hierarchical Bayesian Model of Relative Risks
Empirical Bayes Estimation of Relative Risks
Fully Bayesian Estimation of Relative Risks
Discussion
MCMC IN IMAGE ANALYSIS
Introduction
The Relevance of MCMC to Image Analysis
Image Models at Different Levels
Methodological Innovations in MCMC Stimulated by Imaging
Discussion
MEASUREMENT ERROR
Introduction
Conditional-Independence Modelling
Illustrative examples
Discussion
GIBBS SAMPLING METHODS IN GENETICS
Introduction
Standard Methods in Genetics
Gibbs Sampling Approaches
MCMC Maximum Likelihood
Application to a Family Study of Breast Cancer
Conclusions
MIXTURES OF DISTRIBUTIONS: INFERENCE AND ESTIMATION
Introduction
The Missing Data Structure
Gibbs Sampling Implementation
Convergence of the Algorithm
Testing for Mixtures
Infinite Mixtures and Other Extensions
AN ARCHAEOLOGICAL EXAMPLE: RADIOCARBON DATING
Introduction
Background to Radiocarbon Dating
Archaeological Problems and Questions
Illustrative Examples
Discussion
Index

저자소개

W. R. Gilks (엮은이)    정보 더보기
펼치기
D. J. Spiegelhalter (엮은이)    정보 더보기
펼치기
이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책