책 이미지
책 정보
· 분류 : 외국도서 > 교육/자료 > 참고자료 > 일반
· ISBN : 9780444503558
· 쪽수 : 536쪽
· 출판일 : 2003-10-01
목차
Preface
Contributors
A Generalities
a-01 Topological Spaces
a-02 Modified Open and Closed Sets (Semi-Open Set etc.)
a-03 Cardinal Functions, Part I
a-04 Cardinal Functions, Part II
a-05 Convergence
a-06 Several Topologies on One Set
a-07 Comparison of Topologies (Minimal and Maximal Topologies)
B Basic constructions
b-01 Subspaces (Hereditary (P)-Spaces)
b-02 Relative Properties
b-03 Product Spaces
b-04 Quotient Spaces and Decompositions
b-05 Adjunction Spaces
b-06 Hyperspaces
b-07 Cleavable (Splittable) Spaces
b-08 Inverse Systems and Direct Systems
b-09 Covering Properties
b-10 Locally (P)-Spaces
b-11 Rim(P)-Spaces
b-12 Categorical Topology
b-13 Special Spaces
C Maps and general types of spaces defined by maps
c-01 Continuous and Topological Mappings
c-02 Open Maps
c-03 Closed Maps
c-04 Perfect Maps
c-05 Cell-Like Maps
c-06 Extensions of Maps
c-07 Topological Embeddings (Universal Spaces)
c-08 Continuous Selections
c-09 Multivalued Functions
c-10 Applications of the Baire Category Theorem to Real Analysis
c-11 Absolute Retracts
c-12 Extensors
c-13 Generalized Continuities
c-14 Spaces of Functions in Pointwise Convergence
c-15 Radon-Nikodym Compacta
c-16 Corson Compacta
c-17 Rosenthal Compacta
c-18 Eberlein Compacta
c-19 Topological Entropy
c-20 Function Spaces
D Fairly general properties
d-01 The Low Separation Axioms T0 and T1
d-02 Higher Separation Axioms
d-03 Frechet and Sequential Spaces
d-04 Pseudoradial Spaces
d-05 Compactness (Local Compactness, Sigma-Compactness etc.)
d-06 Countable Compactness
d-07 Pseudocompact Spaces
d-08 The Lindelof Property
d-09 Realcompactness
d-10 k-Spaces
d-11 Dyadic Compacta
d-12 Paracompact Spaces
d-13 Generalizations of Paracompactness
d-14 Countable Paracompactness, Countable Metacompactness, and Related Concepts
d-15 Extensions of Topological Spaces
d-16 Remainders
d-17 The Cech-Stone Compactification
d-18 The Cech-Stone Compactifications of N and R
d-19 Wallman-Shanin Compactification
d-20 H-Closed Spaces
d-21 Connectedness
d-22 Connectifications
d-23 Special Constructions
E Spaces with richer structures
e-01 Metric Spaces
e-02 Classical Metrization Theorems
e-03 Modern Metrization Theorems
e-04 Special Metrics
e-05 Completeness
e-06 Baire Spaces
e-07 Uniform Spaces, I
e-08 Uniform Spaces, II
e-09 Quasi-Uniform Spaces
e-10 Proximity Spaces
e-11 Generalized Metric Spaces, Part I
e-12 Generalized Metric Spaces, Part II
e-13 Generalized Metric Spaces III: Linearly Stratifiable Spaces and Analogous Classes of Spaces
e-14 Monotone Normality
e-15 Probabilistic Metric Spaces
e-16 Approach Spaces
F Special properties
f-01 Continuum Theory
f-02 Continuum Theory (General)
f-03 Dimension Theory (General Theory)
f-04 Dimension of Metrizable Spaces
f-05 Dimension Theory: Infinite Dimension
f-06 Zero-Dimensional Spaces
f-07 Linearly Ordered and Generalized Ordered Spaces
f-08 Unicoherence and Multicoherence
f-09 Topological Characterizations of Separable Metrizable Zero-Dimensional Spaces
f-10 Topological Characterizations of Spaces
f-11 Higher-Dimensional Local Connectedness
G Special spaces
g-01 Extremally Disconnected Spaces
g-02 Scattered Spaces
g-03 Dowker Spaces
H Connections with other structures
h-01 Topological Groups
h-02 TopologicalRings, Division Rings, Fields and Lattices
h-03 Free Topological Groups
h-04 Homogeneous Spaces
h-05 Transformation Groups and Semigroups
h-06 Topological Discrete Dynamical Systems
h-07 Fixed Point Theorems
h-08 Topological Representations of Algebraic Systems
J Influencies of other fields
j-01 Descriptive Set Theory
j-02 Consistency Results in Topology, I: Quotable Principles
03 Consistency Results in Topology, II: Forcing and Large Cardinals
j-04 Digital Topology
j-05 Computer Science and Topology
j-06 Non Standard Topology
j-07 Topological Games
j-08 Fuzzy Topological Spaces
K Connections with other fields
k-01 Banach Spaces and Topology (I)
k-02 Banach Spaces (and Topology) (II)
k-03 Measure Theory, I
k-04 Measure Theory, II
k-05 Polyhedra and Complexes
k-06 Homology
k-07 Homotopy, I
k-08 Homotopy, II
k-09 Shape Theory
k-10 Manifold
k-11 Infinite-Dimensional Topology
Subject index














