logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Coherent Stress Testing

Coherent Stress Testing (Hardcover)

Riccardo Rebonato (지은이)
John Wiley & Sons Inc
113,750원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
93,270원 -18% 0원
4,670원
88,600원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
알라딘 판매자 배송 1개 10,000원 >
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Coherent Stress Testing
eBook 미리보기

책 정보

· 제목 : Coherent Stress Testing (Hardcover) 
· 분류 : 외국도서 > 경제경영 > 금융/재정 > 일반
· ISBN : 9780470666012
· 쪽수 : 240쪽
· 출판일 : 2010-07-13

목차

Acknowledgements.

1 Introduction.

1.1 Why We Need Stress Testing.

1.2 Plan of the Book.

1.3 Suggestions for Further Reading.

I Data, Models and Reality.

2 Risk and Uncertainty – or, Why Stress Testing is Not Enough.

2.1 The Limits of Quantitative Risk Analysis.

2.2 Risk or Uncertainty?

2.3 Suggested Reading.

3 The Role of Models in Risk Management and Stress Testing.

3.1 How Did We Get Here?

3.2 Statement of the Two Theses of this Chapter.

3.3 Defence of the First Thesis (Centrality of Models).

3.3.1 Models as Indispensable Interpretative Tools.

3.3.2 The Plurality-of-Models View.

3.4 Defence of the Second Thesis (Coordination).

3.4.1 Traders as Agents.

3.4.2 Agency Brings About Coordination.

3.4.3 From Coordination to Positive Feedback.

3.5 The Role of Stress and Scenario Analysis.

3.6 Suggestions for Further Reading.

4 What Kind of Probability Do We Need in Risk Management?

4.1 Frequentist versus Subjective Probability.

4.2 Tail Co-dependence.

4.3 From Structural Models to Co-dependence.

4.4 Association or Causation?

4.5 Suggestions for Further Reading.

II The Probabilistic Tools and Concepts.

5 Probability with Boolean Variables I: Marginal and Conditional Probabilities.

5.1 The Set-up and What We are Trying to Achieve.

5.2 (Marginal) Probabilities.

5.3 Deterministic Causal Relationship.

5.4 Conditional Probabilities.

5.5 Time Ordering and Causation.

5.6 An Important Consequence: Bayes’ Theorem.

5.7 Independence.

5.8 Two Worked-Out Examples.

5.8.1 Dangerous Running.

5.8.2 Rare and Even More Dangerous Diseases.

5.9 Marginal and Conditional Probabilities: A Very Important Link.

5.10 Interpreting and Generalizing the Factors x k/i.

5.11 Conditional Probability Maps.

6 Probability with Boolean Variables II: Joint Probabilities.

6.1 Conditioning on More Than One Event.

6.2 Joint Probabilities.

6.3 A Remark on Notation.

6.4 From the Joint to the Marginal and the Conditional Probabilities.

6.5 From the Joint Distribution to Event Correlation.

6.6 From the Conditional and Marginal to the Joint Probabilities?

6.7 Putting Independence to Work.

6.8 Conditional Independence.

6.9 Obtaining Joint Probabilities with Conditional Independence.

6.10 At a Glance.

6.11 Summary.

6.12 Suggestions for Further Reading.

7 Creating Probability Bounds.

7.1 The Lay of the Land.

7.2 Bounds on Joint Probabilities.

7.3 How Tight are these Bounds in Practice?

8 Bayesian Nets I: An Introduction.

8.1 Bayesian Nets: An Informal Definition.

8.2 Defining the Structure of Bayesian Nets.

8.3 More About Conditional Independence.

8.4 What Goes in the Conditional Probability Tables?

8.5 Useful Relationships.

8.6 A Worked-Out Example.

8.7 A Systematic Approach.

8.8 What Can We Do with Bayesian Nets?

8.8.1 Unravelling the Causal Structure.

8.8.2 Estimating the Joint Probabilities.

8.9 Suggestions for Further Reading.

9 Bayesian Nets II: Constructing Probability Tables.

9.1 Statement of the Problem.

9.2 Marginal Probabilities – First Approach.

9.2.1 Starting from a Fixed Probability.

9.2.2 Starting from a Fixed Magnitude of the Move.

9.3 Marginal Probabilities – Second Approach.

9.4 Handling Events of Different Probability.

9.5 Conditional Probabilities: A Reasonable Starting Point.

9.6 Conditional Probabilities: Checks and Constraints.

9.6.1 Necessary Conditions.

9.6.2 Triplet Conditions.

9.6.3 Independence.

9.6.4 Deterministic Causation.

9.6.5 Incompatibility of Events.

9.7 Internal Compatibility of Conditional Probabilities: The Need for a Systematic Approach.

III Applications.

10 Obtaining a Coherent Solution I: Linear Programming.

10.1 Plan of the Work Ahead.

10.2 Coherent Solution with Conditional Probabilities Only.

10.3 The Methodology in Practice: First Pass.

10.4 The CPU Cost of the Approach.

10.5 Illustration of the Linear Programming Technique.

10.6 What Can We Do with this Information?

10.6.1 Extracting Information with Conditional Probabilities Only.

10.6.2 Extracting Information with Conditional and Marginal Probabilities.

11 Obtaining a Coherent Solution II: Bayesian Nets.

11.1 Solution with Marginal and n-conditioned Probabilities.

11.1.1 Generalizing the Results.

11.2 An ‘Automatic’ Prescription to Build Joint Probabilities.

11.3 What Can We Do with this Information?

11.3.1 Risk-Adjusting Returns.

IV Making It Work In Practice.

12 Overcoming Our Cognitive Biases.

12.1 Cognitive Shortcomings and Bounded Rationality.

12.1.1 How Pervasive are Cognitive Shortcomings?

12.1.2 The Social Context.

12.1.3 Adaptiveness.

12.2 Representativeness.

12.3 Quantification of the Representativeness Bias.

12.4 Causal/Diagnostic and Positive/Negative Biases.

12.5 Conclusions.

12.6 Suggestions for Further Reading.

13 Selecting and Combining Stress Scenarios.

13.1 Bottom Up or Top Down?

13.2 Relative Strengths and Weaknesses of the Two Approaches.

13.3 Possible Approaches to a Top-Down Analysis.

13.4 Sanity Checks.

13.5 How to Combine Stresses – Handling the Dimensionality Curse.

13.6 Combining the Macro and Bottom-Up Approaches.

14 Governance.

14.1 The Institutional Aspects of Stress Testing.

14.1.1 Transparency and Ease of Use.

14.1.2 Challenge by Non-specialists.

14.1.3 Checks for Completeness.

14.1.4 Interactions among Different Specialists.

14.1.5 Auditability of the Process and of the Results.

14.2 Lines of Criticism.

14.2.1 The Role of Subjective Inputs.

14.2.2 The Complexity of the Stress-testing Process.

Appendix A Simple Introduction to Linear Programming.

A.1 Plan of the Appendix.

A.2 Linear Programming – A Refresher.

A.3 The Simplex Method.

References.

Index.

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책