logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Nonlinear Inverse Problems in Imaging

Nonlinear Inverse Problems in Imaging (Hardcover)

Eung Je Woo, Jin Keun Seo (지은이)
John Wiley & Sons Inc
15,000원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
15,000원 -0% 0원
450원
14,550원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Nonlinear Inverse Problems in Imaging
eBook 미리보기

책 정보

· 제목 : Nonlinear Inverse Problems in Imaging (Hardcover) 
· 분류 : 외국도서 > 기술공학 > 기술공학 > 신호/신호처리
· ISBN : 9780470669426
· 쪽수 : 374쪽
· 출판일 : 2012-12-26

목차

Preface xi

List of Abbreviations xiii

1 Introduction 1

1.1 Forward Problem 1

1.2 Inverse Problem 3

1.3 Issues in Inverse Problem Solving 4

1.4 Linear, Nonlinear and Linearized Problems 6

References 7

2 Signal and System as Vectors 9

2.1 Vector Spaces 9

2.1.1 Vector Space and Subspace 9

2.1.2 Basis, Norm and Inner Product 11

2.1.3 Hilbert Space 13

2.2 Vector Calculus 16

2.2.1 Gradient 16

2.2.2 Divergence 17

2.2.3 Curl 17

2.2.4 Curve 18

2.2.5 Curvature 19

2.3 Taylor’s Expansion 21

2.4 Linear System of Equations 23

2.4.1 Linear System and Transform 23

2.4.2 Vector Space of Matrix 24

2.4.3 Least-Squares Solution 27

2.4.4 Singular Value Decomposition (SVD) 28

2.4.5 Pseudo-inverse 29

2.5 Fourier Transform 30

2.5.1 Series Expansion 30

2.5.2 Fourier Transform 32

2.5.3 Discrete Fourier Transform (DFT) 37

2.5.4 Fast Fourier Transform (FFT) 40

2.5.5 Two-Dimensional Fourier Transform 41

References 42

3 Basics of Forward Problem 43

3.1 Understanding a PDE using Images as Examples 44

3.2 Heat Equation 46

3.2.1 Formulation of Heat Equation 46

3.2.2 One-Dimensional Heat Equation 48

3.2.3 Two-Dimensional Heat Equation and Isotropic Diffusion 50

3.2.4 Boundary Conditions 51

3.3 Wave Equation 52

3.4 Laplace and Poisson Equations 56

3.4.1 Boundary Value Problem 56

3.4.2 Laplace Equation in a Circle 58

3.4.3 Laplace Equation in Three-Dimensional Domain 60

3.4.4 Representation Formula for Poisson Equation 66

References 70

Further Reading 70

4 Analysis for Inverse Problem 71

4.1 Examples of Inverse Problems in Medical Imaging 71

4.1.1 Electrical Property Imaging 71

4.1.2 Mechanical Property Imaging 74

4.1.3 Image Restoration 75

4.2 Basic Analysis 76

4.2.1 Sobolev Space 78

4.2.2 Some Important Estimates 81

4.2.3 Helmholtz Decomposition 87

4.3 Variational Problems 88

4.3.1 Lax–Milgram Theorem 88

4.3.2 Ritz Approach 92

4.3.3 Euler–Lagrange Equations 96

4.3.4 Regularity Theory and Asymptotic Analysis 100

4.4 Tikhonov Regularization and Spectral Analysis 104

4.4.1 Overview of Tikhonov Regularization 105

4.4.2 Bounded Linear Operators in Banach Space 109

4.4.3 Regularization in Hilbert Space or Banach Space 112

4.5 Basics of Real Analysis 116

4.5.1 Riemann Integrability 116

4.5.2 Measure Space 117

4.5.3 Lebesgue-Measurable Function 119

4.5.4 Pointwise, Uniform, Norm Convergence and Convergence in Measure 123

4.5.5 Differentiation Theory 125

References 127

Further Reading 127

5 Numerical Methods 129

5.1 Iterative Method for Nonlinear Problem 129

5.2 Numerical Computation of One-Dimensional Heat Equation 130

5.2.1 Explicit Scheme 132

5.2.2 Implicit Scheme 135

5.2.3 Crank–Nicolson Method 136

5.3 Numerical Solution of Linear System of Equations 136

5.3.1 Direct Method using LU Factorization 136

5.3.2 Iterative Method using Matrix Splitting 138

5.3.3 Iterative Method using Steepest Descent Minimization 140

5.3.4 Conjugate Gradient (CG) Method 143

5.4 Finite Difference Method (FDM) 145

5.4.1 Poisson Equation 145

5.4.2 Elliptic Equation 146

5.5 Finite Element Method (FEM) 147

5.5.1 One-Dimensional Model 147

5.5.2 Two-Dimensional Model 149

5.5.3 Numerical Examples 154

References 157

Further Reading 158

6 CT, MRI and Image Processing Problems 159

6.1 X-ray Computed Tomography 159

6.1.1 Inverse Problem 160

6.1.2 Basic Principle and Nonlinear Effects 160

6.1.3 Inverse Radon Transform 163

6.1.4 Artifacts in CT 166

6.2 Magnetic Resonance Imaging 167

6.2.1 Basic Principle 167

6.2.2 k-Space Data 168

6.2.3 Image Reconstruction 169

6.3 Image Restoration 171

6.3.1 Role of p in (6.35) 173

6.3.2 Total Variation Restoration 175

6.3.3 Anisotropic Edge-Preserving Diffusion 180

6.3.4 Sparse Sensing 181

6.4 Segmentation 184

6.4.1 Active Contour Method 185

6.4.2 Level Set Method 187

6.4.3 Motion Tracking for Echocardiography 189

References 192

Further Reading 194

7 Electrical Impedance Tomography 195

7.1 Introduction 195

7.2 Measurement Method and Data 196

7.2.1 Conductivity and Resistance 196

7.2.2 Permittivity and Capacitance 197

7.2.3 Phasor and Impedance 198

7.2.4 Admittivity and Trans-Impedance 199

7.2.5 Electrode Contact Impedance 200

7.2.6 EIT System 201

7.2.7 Data Collection Protocol and Data Set 202

7.2.8 Linearity between Current and Voltage 204

7.3 Representation of Physical Phenomena 205

7.3.1 Derivation of Elliptic PDE 205

7.3.2 Elliptic PDE for Four-Electrode Method 206

7.3.3 Elliptic PDE for Two-Electrode Method 209

7.3.4 Min–Max Property of Complex Potential 210

7.4 Forward Problem and Model 210

7.4.1 Continuous Neumann-to-Dirichlet Data 211

7.4.2 Discrete Neumann-to-Dirichlet Data 212

7.4.3 Nonlinearity between Admittivity and Voltage 214

7.5 Uniqueness Theory and Direct Reconstruction Method 216

7.5.1 Calder´on’s Approach 216

7.5.2 Uniqueness and Three-Dimensional Reconstruction: Infinite Measurements 218

7.5.3 Nachmann’s D-bar Method in Two Dimensions 221

7.6 Back-Projection Algorithm 223

7.7 Sensitivity and Sensitivity Matrix 226

7.7.1 Perturbation and Sensitivity 226

7.7.2 Sensitivity Matrix 227

7.7.3 Linearization 227

7.7.4 Quality of Sensitivity Matrix 229

7.8 Inverse Problem of EIT 229

7.8.1 Inverse Problem of RC Circuit 229

7.8.2 Formulation of EIT Inverse Problem 231

7.8.3 Ill-Posedness of EIT Inverse Problem 231

7.9 Static Imaging 232

7.9.1 Iterative Data Fitting Method 232

7.9.2 Static Imaging using Four-Channel EIT System 233

7.9.3 Regularization 237

7.9.4 Technical Difficulty of Static Imaging 237

7.10 Time-Difference Imaging 239

7.10.1 Data Sets for Time-Difference Imaging 239

7.10.2 Equivalent Homogeneous Admittivity 240

7.10.3 Linear Time-Difference Algorithm using Sensitivity Matrix 241

7.10.4 Interpretation of Time-Difference Image 242

7.11 Frequency-Difference Imaging 243

7.11.1 Data Sets for Frequency-Difference Imaging 243

7.11.2 Simple Difference Ft,ω2 − Ft,ω1 244

7.11.3 Weighted Difference Ft,ω2 − αFt,ω1 244

7.11.4 Linear Frequency-Difference Algorithm using Sensitivity Matrix 245

7.11.5 Interpretation of Frequency-Difference Image 246

References 247

8 Anomaly Estimation and Layer Potential Techniques 251

8.1 Harmonic Analysis and Potential Theory 252

8.1.1 Layer Potentials and Boundary Value Problems for Laplace Equation 252

8.1.2 Regularity for Solution of Elliptic Equation along Boundary of Inhomogeneity 259

8.2 Anomaly Estimation using EIT 266

8.2.1 Size Estimation Method 268

8.2.2 Location Search Method 274

8.3 Anomaly Estimation using Planar Probe 281

8.3.1 Mathematical Formulation 282

8.3.2 Representation Formula 287

References 290

Further Reading 291

9 Magnetic Resonance Electrical Impedance Tomography 295

9.1 Data Collection using MRI 296

9.1.1 Measurement of Bz 297

9.1.2 Noise in Measured Bz Data 299

9.1.3 Measurement of B = (Bx,By,Bz) 301

9.2 Forward Problem and Model Construction 301

9.2.1 Relation between J, Bz and σ 302

9.2.2 Three Key Observations 303

9.2.3 Data Bz Traces σ∇u × ez Directional Change of σ 304

9.2.4 Mathematical Analysis toward MREIT Model 305

9.3 Inverse Problem Formulation using B or J 308

9.4 Inverse Problem Formulation using Bz 309

9.4.1 Model with Two Linearly Independent Currents 309

9.4.2 Uniqueness 310

9.4.3 Defected Bz Data in a Local Region 314

9.5 Image Reconstruction Algorithm 315

9.5.1 J -substitution Algorithm 315

9.5.2 Harmonic Bz Algorithm 317

9.5.3 Gradient Bz Decomposition and Variational Bz Algorithm 319

9.5.4 Local Harmonic Bz Algorithm 320

9.5.5 Sensitivity Matrix-based Algorithm 322

9.5.6 Anisotropic Conductivity Reconstruction Algorithm 323

9.5.7 Other Algorithms 324

9.6 Validation and Interpretation 325

9.6.1 Image Reconstruction Procedure using Harmonic Bz Algorithm 325

9.6.2 Conductivity Phantom Imaging 326

9.6.3 Animal Imaging 327

9.6.4 Human Imaging 330

9.7 Applications 331

References 332

10 Magnetic Resonance Elastography 335

10.1 Representation of Physical Phenomena 336

10.1.1 Overview of Hooke’s Law 336

10.1.2 Strain Tensor in Lagrangian Coordinates 339

10.2 Forward Problem and Model 340

10.3 Inverse Problem in MRE 342

10.4 Reconstruction Algorithms 342

10.4.1 Reconstruction of μ with the Assumption of Local Homogeneity 344

10.4.2 Reconstruction of μ without the Assumption of Local Homogeneity 345

10.4.3 Anisotropic Elastic Moduli Reconstruction 349

10.5 Technical Issues in MRE 350

References 351

Further Reading 352

Index 355

저자소개

Eung Je Woo (지은이)    정보 더보기
펼치기
이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책