logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Kernel Methods for Remote Sensing Data Analysis

Kernel Methods for Remote Sensing Data Analysis (Hardcover)

Gustavo Camps-valls (엮은이)
John Wiley & Sons Inc
321,800원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
263,870원 -18% 0원
13,200원
250,670원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Kernel Methods for Remote Sensing Data Analysis
eBook 미리보기

책 정보

· 제목 : Kernel Methods for Remote Sensing Data Analysis (Hardcover) 
· 분류 : 외국도서 > 기술공학 > 기술공학 > 원격탐사/지리정보 시스템
· ISBN : 9780470722114
· 쪽수 : 434쪽
· 출판일 : 2009-12-01

목차

About the editors.

List of authors.

Preface.

Acknowledgments.

List of symbols.

List of abbreviations.

I Introduction.

1 Machine learning techniques in remote sensing data analysis (Bjorn Waske, Mathieu Fauvel, Jon Atli Benediktsson and Jocelyn Chanussot).

1.1 Introduction.

1.2 Supervised classification: algorithms and applications.

1.3 Conclusion.

Acknowledgments. 

References.

2 An introduction to kernel learning algorithms (Peter V. Gehler and Bernhard Scholkopf).

2.1 Introduction.

2.2 Kernels.

2.3 The representer theorem.

2.4 Learning with kernels.

2.5 Conclusion.

References.

II Supervised image classification.

3 The Support Vector Machine (SVM) algorithm for supervised classification of hyperspectral remote sensing data (J. Anthony Gualtieri). 

3.1 Introduction.

3.2 Aspects of hyperspectral data and its acquisition.

3.3 Hyperspectral remote sensing and supervised classification.

3.4 Mathematical foundations of supervised classification.

3.5 From structural risk minimization to a support vector machine algorithm.

3.6 Benchmark hyperspectral data sets.

3.7 Results.

3.8 Using spatial coherence.

3.9 Why do SVMs perform better than other methods?

3.10 Conclusions.

References.

4 On training and evaluation of SVM for remote sensing applications (Giles M. Foody).

4.1 Introduction.

4.2 Classification for thematic mapping.

4.3 Overview of classification by a SVM.

4.4 Training stage.

4.5 Testing stage.

4.6 Conclusion.

Acknowledgments. 

References.

5 Kernel Fisher’s Discriminant with heterogeneous kernels (M. Murat Dundar and Glenn Fung).

5.1 Introduction.

5.2 Linear Fisher’s Discriminant.

5.3 Kernel Fisher Discriminant.

5.4 Kernel Fisher’s Discriminant with heterogeneous kernels.

5.5 Automatic kernel selection KFD algorithm.

5.6 Numerical results.

5.7 Conclusion.

References.

6 Multi-temporal image classification with kernels (Jordi Muñoz-Marí, Luis Gómez-Choa, Manel Martínez-Ramón, José Luis Rojo-Álvarez, Javier Calpe-Maravilla and Gustavo Camps-Valls).

6.1 Introduction.

6.2 Multi-temporal classification and change detection with kernels.

6.3 Contextual and multi-source data fusion with kernels.

6.4 Multi-temporal/-source urban monitoring.

6.5 Conclusions.

Acknowledgments. 

References.

7 Target detection with kernels (Nasser M. Nasrabadi).

7.1 Introduction.

7.2 Kernel learning theory.

7.3 Linear subspace-based anomaly detectors and their kernel versions.

7.4 Results.

7.5 Conclusion.

References.

8 One-class SVMs for hyperspectral anomaly detection (Amit Banerjee, Philippe Burlina and Chris Diehl).

8.1 Introduction.

8.2 Deriving the SVDD.

8.3 SVDD function optimization.

8.4 SVDD algorithms for hyperspectral anomaly detection.

8.5 Experimental results.

8.6 Conclusions.

References.

III Semi-supervised image classification.

9 A domain adaptation SVM and a circular validation strategy for land-cover maps updating (Mattia Marconcini and Lorenzo Bruzzone).

9.1 Introduction.

9.2 Literature survey.

9.3 Proposed domain adaptation SVM.

9.4 Proposed circular validation strategy.

9.5 Experimental results.

9.6 Discussions and conclusion.

References.

10 Mean kernels for semi-supervised remote sensing image classification (Luis Gómez-Chova, Javier Calpe-Maravilla, Lorenzo Bruzzone and Gustavo Camps-Valls).

10.1 Introduction.

10.2 Semi-supervised classification with mean kernels.

10.3 Experimental results.

10.4 Conclusions.

Acknowledgments. 

References.

IV Function approximation and regression.

11 Kernel methods for unmixing hyperspectral imagery (Joshua Broadwater, Amit Banerjee and Philippe Burlina).

11.1 Introduction.

11.2 Mixing models.

11.3 Proposed kernel unmixing algorithm.

11.4 Experimental results of the kernel unmixing algorithm.

11.5 Development of physics-based kernels for unmixing.

11.6 Physics-based kernel results.

11.7 Summary.

References.

12 Kernel-based quantitative remote sensing inversion (Yanfei Wang, Changchun Yang and Xiaowen Li).

12.1 Introduction.

12.2 Typical kernel-based remote sensing inverse problems.

12.3 Well-posedness and ill-posedness.

12.4 Regularization.

12.5 Optimization techniques.

12.6 Kernel-based BRDF model inversion.

12.7 Aerosol particle size distribution function retrieval.

12.8 Conclusion.

Acknowledgments. 

References.

13 Land and sea surface temperature estimation by support vector regression (Gabriele Moser and Sebastiano B. Serpico).

13.1 Introduction.

13.2 Previous work.

13.3 Methodology.

13.4 Experimental results.

13.5 Conclusions.

Acknowledgments. 

References.

V Kernel-based feature extraction.

14 Kernel multivariate analysis in remote sensing feature extraction (Jerónimo Arenas-Garciá and Kaare Brandt Petersen).

14.1 Introduction.

14.2 Multivariate analysis methods.

14.3 Kernel multivariate analysis.

14.4 Sparse Kernel OPLS.

14.5 Experiments: pixel-based hyperspectral image classification.

14.6 Conclusions.

Acknowledgments. 

References.

15 KPCA algorithm for hyperspectral target/anomaly detection (Yanfeng Gu).

15.1 Introduction.

15.2 Motivation.

15.3 Kernel-based feature extraction in hyperspectral images.

15.4 Kernel-based target detection in hyperspectral images.

15.5 Kernel-based anomaly detection in hyperspectral images.

15.6 Conclusions.

Acknowledgments 

References.

16 Remote sensing data Classification with kernel nonparametric feature extractions (Bor-Chen Kuo, Jinn-Min Yang and Cheng-Hsuan Li).

16.1 Introduction.

16.2 Related feature extractions.

16.3 Kernel-based NWFE and FLFE.

16.4 Eigenvalue resolution with regularization.

16.5 Experiments.

16.6 Comments and conclusions.

References.

Index.

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책