logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

[eBook Code] Cooperative Control of Distributed Multi-Agent Systems

[eBook Code] Cooperative Control of Distributed Multi-Agent Systems (eBook Code, 1st)

Jeff Shamma (엮은이)
Wiley-Interscience
359,080원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
287,260원 -20% 0원
0원
287,260원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

[eBook Code] Cooperative Control of Distributed Multi-Agent Systems
eBook 미리보기

책 정보

· 제목 : [eBook Code] Cooperative Control of Distributed Multi-Agent Systems (eBook Code, 1st) 
· 분류 : 외국도서 > 과학/수학/생태 > 과학 > 시스템 이론
· ISBN : 9780470724194
· 쪽수 : 452쪽
· 출판일 : 2008-02-28

목차

List of Contributors.

Preface.

Part I. Introduction.

1. Dimensions of cooperative control (Jeff S. Shamma and Gurdal Arslan).

1.1 Why cooperative control?

1.2 Dimensions of cooperative control.

1.3 Future directions.

Acknowledgements.

References

Part II. Distributed Control and Computation.

2. Design of behavior of swarms: From flocking to data fusion using microfilter networks (Reza Olfati-Saber).

2.1 Introduction.

2.2 Consensus problems.

2.3 Flocking behavior for distributed coverage.

2.4 Microfilter networks for cooperative data fusion.

Acknowledgements.

References.

3. Connectivity and convergence of formations (Sonja Glavaski, Anca Williams and Tariq Samad).

3.1 Introduction.

3.2 Problem formulation.

3.3 Algebraic graph theory.

3.4 Stability of vehicle formations in the case of time-invariant communication.

3.5 Stability of vehicle formations in the case of time-variant communication.

3.6 Stabilizing feedback for the time-variant communication case.

3.7 Graph connectivity and stability of vehicle formations.

3.8 Conclusion.

Acknowledgements.

References.

4. Distributed receding horizon control: stability via move suppression (William B. Dunbar).

4.1 Introduction.

4.2 System description and objective.

4.3 Distributed receding horizon control.

4.4 Feasibility and stability analysis.

4.5 Conclusion.

Acknowledgements.

References.

5. Distributed predictive control: synthesis, stability and feasibility (Tam´as Keviczky, Francesco Borrelli and Gary J. Balas).

5.1 Introduction.

5.2 Problem formulation.

5.3 Distributed MPC scheme.

5.4 DMPC stability analysis.

5.5 Distributed design for identical unconstrained LTI subsystems.

5.6 Ensuring feasibility.

5.7 Conclusion.

References.

6. Task assignment for mobile agents (Brandon J. Moore and Kevin M. Passino).

6.1 Introduction.

6.2 Background.

6.3 Problem statement.

6.4 Assignment algorithm and results.

6.5 Simulations.

6.6 Conclusions.

Acknowledgements.

References.

7. On the value of information in dynamic multiple-vehicle routing problems (Alessandro Arsie, John J. Enright and Emilio Frazzoli ).

7.1 Introduction.

7.2 Problem formulation.

7.3 Control policy description.

7.4 Performance analysis in light load.

7.5 A performance analysis for sTP, mTP/FG and mTP policies.

7.6 Some numerical results.

7.7 Conclusions.

References.

8. Optimal agent cooperation with local information (Eric Feron and Jan DeMot).

8.1 Introduction.

8.2 Notation and problem formulation.

8.3 Mathematical problem formulation.

8.4 Algorithm overview and LP decomposition.

8.5 Fixed point computation.

8.6 Discussion and examples.

8.7 Conclusion.

Acknowledgements.

References.

9. Multiagent cooperation through egocentric modeling (Vincent Pei-wen Seah and Jeff S. Shamma).

9.1 Introduction.

9.2 Centralized and decentralized optimization.

9.3 Evolutionary cooperation.

9.4 Analysis of convergence.

9.5 Conclusion.

Acknowledgements.

References.

Part III. Adversarial Interactions.

10. Multi-vehicle cooperative control using mixed integer linear programming (Matthew G. Earl and Raffaello D’Andrea).

10.1 Introduction.

10.2 Vehicle dynamics.

10.3 Obstacle avoidance.

10.4 RoboFlag problems.

10.5 Average case complexity.

10.6 Discussion.

10.7 Appendix: Converting logic into inequalities.

Acknowledgements.

References.

11. LP-based multi-vehicle path planning with adversaries (Georgios C. Chasparis and Jeff S. Shamma).

11.1 Introduction.

11.2 Problem formulation.

11.3 Optimization set-up.

11.4 LP-based path planning.

11.5 Implementation.

11.6 Conclusion.

Acknowledgements.

References.

12. Characterization of LQG differential games with different information patterns (Ashitosh Swarup and Jason L. Speyer).

12.1 Introduction.

12.2 Formulation of the discrete-time LQG game.

12.3 Solution of the LQG game as the limit to the LEG Game.

12.4 LQG game as the limit of the LEG Game.

12.5 Correlation properties of the LQG game filter in the limit.

12.6 Cost function properties—effect of a perturbation in up.

12.7 Performance of the Kalman filtering algorithm.

12.8 Comparison with the Willman algorithm.

12.9 Equilibrium properties of the cost function: the saddle interval.

12.10 Conclusion.

Acknowledgements.

References.

Part IV. Uncertain Evolution.

13 Modal estimation of jump linear systems: an information theoretic viewpoint (Nuno C. Martins and Munther A. Dahleh).

13.1 Estimation of a class of hidden markov models.

13.2 Problem statement.

13.3 Encoding and decoding.

13.4 Performance analysis.

13.5 Auxiliary results leading to the proof of theorem.

Acknowledgements.

References.

14. Conditionally-linear filtering for mode estimation in jump-linear systems (Daniel Choukroun and Jason L. Speyer).

14.1 Introduction.

14.2 Conditionally-Linear Filtering.

14.3 Mode-estimation for jump-linear systems.

14.4 Numerical Example.

14.5 Conclusion.

14.6 Appendix A: Inner product of equation (14.14).

14.7 Appendix B: Development of the filter equations (14.36) to (14.37).

Acknowledgements.

References.

15. Cohesion of languages in grammar networks (Y. Lee, T.C. Collier, C.E. Taylor and E.P. Stabler).

15.1 Introduction.

15.2 Evolutionary dynamics of languages.

15.3 Topologies of language populations.

15.4 Language structure.

15.5 Networks induced by structural similarity.

15.6 Conclusion.

Acknowledgements.

References.

Part V. Complexity Management.

16. Complexity management in the state estimation of multi-agent systems (Domitilla Del Vecchio and Richard M. Murray).

16.1 Introduction.

16.2 Motivating example.

16.3 Basic concepts.

16.4 Problem formulation.

16.5 Problem solution.

16.6 Example: the RoboFlag Drill.

16.7 Existence of discrete state estimators on a lattice.

16.8 Extensions to the estimation of discrete and continuous variables.

16.9 Conclusion.

Acknowledgements.

References.

17. Abstraction-based command and control with patch models (V. G. Rao, S. Goldfarb and R. D’Andrea).

17.1 Introduction.

17.2 Overview of patch models.

17.3 Realization and verification.

17.4 Human and artificial decision-making.

17.5 Hierarchical control.

17.6 Conclusion.

References.

Index.

저자소개

Jeff Shamma (엮은이)    정보 더보기
펼치기
이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책