logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

The Em Algorithm and Extensions

The Em Algorithm and Extensions (Hardcover, 2)

Geoffrey J. McLachlan (지은이)
Wiley-Interscience
316,530원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
237,390원 -25% 0원
7,130원
230,260원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

The Em Algorithm and Extensions
eBook 미리보기

책 정보

· 제목 : The Em Algorithm and Extensions (Hardcover, 2) 
· 분류 : 외국도서 > 과학/수학/생태 > 수학 > 확률과 통계 > 일반
· ISBN : 9780471201700
· 쪽수 : 400쪽
· 출판일 : 2008-03-01

목차

Preface to the Second Edition.

Preface to the First Edition.

List of Examples.

1. General Introduction.

1.1 Introduction.

1.2 Maximum Likelihood Estimation.

1.3 Newton-Type Methods.

1.4 Introductory Examples.

1.5 Formulation of the EM Algorithm.

1.6 EM Algorithm for MAP and MPL Estimation.

1.7 Brief Summary of the Properties of EM Algorithm.

1.8 History of the EM Algorithm.

1.9 Overview of the Book.

1.10 Notations.

2. Examples of the EM Algorithm.

2.1 Introduction.

2.2 Multivariate Data with Missing Values.

2.3 Least Square with the Missing Data.

2.4 Example 2.4: Multinomial with Complex Cell Structure.

2.5 Example 2.5: Analysis of PET and SPECT Data.

2.6 Example 2.6: Multivariate t-Distribution (Known D.F.).

2.7 Finite Normal Mixtures.

2.8 Example 2.9: Grouped and Truncated Data.

2.9 Example 2.10: A Hidden Markov AR(1) Model.

3. Basic Theory of the EM Algorithm.

3.1 Introduction.

3.2 Monotonicity of a Generalized EM Algorithm.

3.3 Monotonicity of a Generalized EM Algorithm.

3.4 Convergence of an EM Sequence to a Stationary Value.

3.5 Convergence of an EM Sequence of Iterates.

3.6 Examples of Nontypical Behavior of an EM (GEM) Sequence.

3.7 Score Statistic.

3.8 Missing Information.

3.9 Rate of Convergence of the EM Algorithm.

4. Standard Errors and Speeding up Convergence.

4.1 Introduction.

4.2 Observed Information Matrix.

4.3 Approximations to Observed Information Matrix: i.i.d. Case.

4.4 Observed Information Matrix for Grouped Data.

4.5 Supplemented EM Algorithm.

4.6 Bookstrap Approach to Standard Error Approximation.

4.7 Baker’s, Louis’, and Oakes’ Methods for Standard Error Computation.

4.8 Acceleration of the EM Algorithm via Aitken’s Method.

4.9 An Aitken Acceleration-Based Stopping Criterion.

4.10 conjugate Gradient Acceleration of EM Algorithm.

4.11 Hybrid Methods for Finding the MLE.

4.12 A GEM Algorithm Based on One Newton-Raphson Algorithm.

4.13 EM gradient Algorithm.

4.14 A Quasi-Newton Acceleration of the EM Algorithm.

4.15 Ikeda Acceleration.

5. Extension of the EM Algorithm.

5.1 Introduction.

5.2 ECM Algorithm.

5.3 Multicycle ECM Algorithm.

5.4 Example 5.2: Normal Mixtures with Equal Correlations.

5.5 Example 5.3: Mixture Models for Survival Data.

5.6 Example 5.4: Contingency Tables with Incomplete Data.

5.7 ECME Algorithm.

5.8 Example 5.5: MLE of t-Distribution with the Unknown D.F.

5.9 Example 5.6: Variance Components.

5.10 Linear Mixed Models.

5.11 Example 5.8: Factor Analysis.

5.12 Efficient Data Augmentation.

5.13 Alternating ECM Algorithm.

5.14 Example 5.9: Mixtures of Factor Analyzers.

5.15 Parameter-Expanded EM (PX-EM) Algorithm.

5.16 EMS Algorithm.

5.17 One-Step-Late Algorithm.

5.18 Variance Estimation for Penalized EM and OSL Algorithms.

5.19 Incremental EM.

5.20 Linear Inverse problems.

6. Monte Carlo Versions of the EM Algorithm.

6.1 Introduction.

6.2 Monte Carlo Techniques.

6.3 Monte Carlo EM.

6.4 Data Augmentation.

6.5 Bayesian EM.

6.6 I.I.D. Monte Carlo Algorithm.

6.7 Markov Chain Monte Carlo Algorithms.

6.8 Gibbs Sampling.

6.9 Examples of MCMC Algorithms.

6.10 Relationship of EM to Gibbs Sampling.

6.11 Data Augmentation and Gibbs Sampling.

6.12 Empirical Bayes and EM.

6.13 Multiple Imputation.

6.14 Missing-Data Mechanism, Ignorability, and EM Algorithm.

7. Some Generalization of the EM Algorithm.

7.1 Introduction.

7.2 Estimating Equations and Estimating Functions.

7.3 Quasi-Score and the Projection-Solution Algorithm.

7.4 Expectation-Solution (ES) Algorithm.

7.5 Other Generalization.

7.6 Variational Bayesian EM Algorithm.

7.7 MM Algorithm.

7.8 Lower Bound Maximization.

7.9 Interval EM Algorithm.

7.10 Competing Methods and Some Comparisons with EM.

7.11 The Delta Algorithm.

7.12 Image Space Reconstruction Algorithm.

8. Further Applications of the EM Algorithm.

8.1 Introduction.

8.2 Hidden Markov Models.

8.3 AIDS Epidemiology.

8.4 Neural Networks.

8.5 Data Mining.

8.6 Bioinformatics.

References.

Author Index.

Subject Index.

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책