logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Character Recognition Systems: A Guide for Students and Practitioners

Character Recognition Systems: A Guide for Students and Practitioners (Hardcover)

Mohammed Cheriet, Nawwaf Kharma, Cheng-lin Liu, Ching Suen (지은이)
Wiley-Interscience
182,000원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
163,800원 -10% 0원
8,190원
155,610원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Character Recognition Systems: A Guide for Students and Practitioners
eBook 미리보기

책 정보

· 제목 : Character Recognition Systems: A Guide for Students and Practitioners (Hardcover) 
· 분류 : 외국도서 > 기술공학 > 기술공학 > 영상학
· ISBN : 9780471415701
· 쪽수 : 360쪽
· 출판일 : 2007-10-01

목차

Figures.

List of Tables.

Preface.

Acknowledgments.

Acronyms.

1. Introduction: Character Recognition, Evolution and Development.

1.1 Generation and Recognition of Characters.

1.2 History of OCR.

1.3 Development of New Techniques.

1.4 Recent Trends and Movements.

1.5 Organization of the Remaining Chapters.

References.

2. Tools for Image Pre-Processing.

2.1 Generic Form Processing System.

2.2 A Stroke Model for Complex Background Elimination.

2.2.1 Global Gray Level Thresholding.

2.2.2 Local Gray Level Thresholding.

2.2.3 Local Feature Thresholding-Stroke Based Model.

2.2.4 Choosing the Most Efficient Character Extraction Method.

2.2.5 Cleaning up Form Items Using Stroke Based Model.

2.3 A Scale-Space Approach for Visual Data Extraction.

2.3.1 Image Regularization.

2.3.2 Data Extraction.

2.3.3 Concluding Remarks.

2.4 Data Pre-Processing.

2.4.1 Smoothing and Noise Removal.

2.4.2 Skew Detection and Correction.

2.4.3 Slant Correction.

2.4.4 Character Normalization.

2.4.5 Contour Tracing/Analysis.

2.4.6 Thinning.

2.5 Chapter Summary.

References 72.

3. Feature Extraction, Selection and Creation.

3.1 Feature Extraction.

3.1.1 Moments.

3.1.2 Histogram.

3.1.3 Direction Features.

3.1.4 Image Registration.

3.1.5 Hough Transform.

3.1.6 Line-Based Representation.

3.1.7 Fourier Descriptors.

3.1.8 Shape Approximation.

3.1.9 Topological Features.

3.1.10 Linear Transforms.

3.1.11 Kernels.

3.2 Feature Selection for Pattern Classification.

3.2.1 Review of Feature Selection Methods.

3.3 Feature Creation for Pattern Classification.

3.3.1 Categories of Feature Creation.

3.3.2 Review of Feature Creation Methods.

3.3.3 Future Trends.

3.4 Chapter Summary.

References.

4. Pattern Classification Methods.

4.1 Overview of Classification Methods.

4.2 Statistical Methods.

4.2.1 Bayes Decision Theory.

4.2.2 Parametric Methods.

4.2.3 Non-ParametricMethods.

4.3 Artificial Neural Networks.

4.3.1 Single-Layer Neural Network.

4.3.2 Multilayer Perceptron.

4.3.3 Radial Basis Function Network.

4.3.4 Polynomial Network.

4.3.5 Unsupervised Learning.

4.3.6 Learning Vector Quantization.

4.4 Support Vector Machines.

4.4.1 Maximal Margin Classifier.

4.4.2 Soft Margin and Kernels.

4.4.3 Implementation Issues.

4.5 Structural Pattern Recognition.

4.5.1 Attributed String Matching.

4.5.2 Attributed Graph Matching.

4.6 Combining Multiple Classifiers.

4.6.1 Problem Formulation.

4.6.2 Combining Discrete Outputs.

4.6.3 Combining Continuous Outputs.

4.6.4 Dynamic Classifier Selection.

4.6.5 Ensemble Generation.

4.7 A Concrete Example.

4.8 Chapter Summary.

References.

5. Word and String Recognition.

5.1 Introduction.

5.2 Character Segmentation.

5.2.1 Overview of Dissection Techniques.

5.2.2 Segmentation of Handwritten Digits.

5.3 Classification-Based String Recognition.

5.3.1 String Classification Model.

5.3.2 Classifier Design for String Recognition.

5.3.3 Search Strategies.

5.3.4 Strategies for Large Vocabulary.

5.4 HMM-Based Recognition.

5.4.1 Introduction to HMMs.

5.4.2 Theory and Implementation.

5.4.3 Application of HMMs to Text Recognition.

5.4.4 Implementation Issues.

5.4.5 Techniques for Improving HMMs’ Performance.

5.4.6 Summary to HMM-Based Recognition.

5.5 Holistic Methods For Handwritten Word Recognition.

5.5.1 Introduction to Holistic Methods.

5.5.2 Overview of Holistic Methods.

5.5.3 Summary to Holistic Methods.

5.6 Chapter Summary.

References.

6. Case Studies.

6.1 Automatically Generating Pattern Recognizers with Evolutionary Computation.

6.1.1 Motivation.

6.1.2 Introduction.

6.1.3 Hunters and Prey.

6.1.4 Genetic Algorithm.

6.1.5 Experiments.

6.1.6 Analysis.

6.1.7 Future Directions.

6.2 Offline Handwritten Chinese Character Recognition.

6.2.1 Related Works.

6.2.2 System Overview.

6.2.3 Character Normalization.

6.2.4 Direction Feature Extraction.

6.2.5 Classification Methods.

6.2.6 Experiments.

6.2.7 Concluding Remarks.

6.3 Segmentation and Recognition of Handwritten Dates on Canadian Bank Cheques.

6.3.1 Introduction.

6.3.2 System Architecture.

6.3.3 Date Image Segmentation.

6.3.4 Date Image Recognition.

6.3.5 Experimental Results.

6.3.6 Concluding Remarks.

References.

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책