logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Contemporary Bayesian Econometrics and Statistics

Contemporary Bayesian Econometrics and Statistics (Hardcover)

John Geweke (지은이)
Wiley-Interscience
43,000원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
43,000원 -0% 0원
860원
42,140원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Contemporary Bayesian Econometrics and Statistics
eBook 미리보기

책 정보

· 제목 : Contemporary Bayesian Econometrics and Statistics (Hardcover) 
· 분류 : 외국도서 > 경제경영 > 경제학/경제일반 > 계량경제학
· ISBN : 9780471679325
· 쪽수 : 320쪽
· 출판일 : 2005-09-01

목차

Preface.

1. Introduction.

1.1 Two Examples.

1.1.1 Public School Class Sizes.

1.1.2 Value at Risk.

1.2 Observables, Unobservables, and Objects of Interest.

1.3 Conditioning and Updating.

1.4 Simulators.

1.5 Modeling.

1.6 Decisionmaking.

2. Elements of Bayesian Inference.

2.1 Basics.

2.2 Sufficiency, Ancillarity, and Nuisance Parameters.

2.2.1 Sufficiency.

2.2.2 Ancillarity.

2.2.3 Nuisance Parameters.

2.3 Conjugate Prior Distributions.

2.4 Bayesian Decision Theory and Point Estimation.

2.5 Credible Sets.

2.6 Model Comparison.

2.6.1 Marginal Likelihoods.

2.6.2 Predictive Densities.

3. Topics in Bayesian Inference.

3.1 Hierarchical Priors and Latent Variables.

3.2 Improper Prior Distributions.

3.3 Prior Robustness and the Density Ratio Class.

3.4 Asymptotic Analysis.

3.5 The Likelihood Principle.

4. Posterior Simulation.

4.1 Direct Sampling,.

4.2 Acceptance and Importance Sampling.

4.2.1 Acceptance Sampling.

4.2.2 Importance Sampling.

4.3 Markov Chain Monte Carlo.

4.3.1 The Gibbs Sampler.

4.3.2 The Metropolis–Hastings Algorithm.

4.4 Variance Reduction.

4.4.1 Concentrated Expectations.

4.4.2 Antithetic Sampling.

4.5 Some Continuous State Space Markov Chain Theory.

4.5.1 Convergence of the Gibbs Sampler.

4.5.2 Convergence of the Metropolis–Hastings Algorithm.

4.6 Hybrid Markov Chain Monte Carlo Methods.

4.6.1 Transition Mixtures.

4.6.2 Metropolis within Gibbs.

4.7 Numerical Accuracy and Convergence in Markov Chain Monte Carlo.

5. Linear Models.

5.1 BACC and the Normal Linear Regression Model.

5.2 Seemingly Unrelated Regressions Models.

5.3 Linear Constraints in the Linear Model.

5.3.1 Linear Inequality Constraints.

5.3.2 Conjectured Linear Restrictions, Linear Inequality Constraints, and Covariate Selection.

5.4 Nonlinear Regression.

5.4.1 Nonlinear Regression with Smoothness Priors.

5.4.2 Nonlinear Regression with Basis Functions.

6. Modeling with Latent Variables.

6.1 Censored Normal Linear Models.

6.2 Probit Linear Models.

6.3 The Independent Finite State Model.

6.4 Modeling with Mixtures of Normal Distributions.

6.4.1 The Independent Student-t Linear Model.

6.4.2 Normal Mixture Linear Models.

6.4.3 Generalizing the Observable Outcomes.

7. Modeling for Time Series.

7.1 Linear Models with Serial Correlation.

7.2 The First-Order Markov Finite State Model.

7.2.1 Inference in the Nonstationary Model.

7.2.2 Inference in the Stationary Model.

7.3 Markov Normal Mixture Linear Model.

8. Bayesian Investigation.

8.1 Implementing Simulation Methods.

8.1.1 Density Ratio Tests.

8.1.2 Joint Distribution Tests.

8.2 Formal Model Comparison.

8.2.1 Bayes Factors for Modeling with Common Likelihoods.

8.2.2 Marginal Likelihood Approximation Using Importance Sampling.

8.2.3 Marginal Likelihood Approximation Using Gibbs Sampling.

8.2.4 Density Ratio Marginal Likelihood Approximation.

8.3 Model Specification.

8.3.1 Prior Predictive Analysis.

8.3.2 Posterior Predictive Analysis.

8.4 Bayesian Communication.

8.5 Density Ratio Robustness Bounds.

Bibliography.

Author Index.

Subject Index.

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책