logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Mechanics of Aircraft Structures

Mechanics of Aircraft Structures (Hardcover, 2 ed)

C. T. Sun (지은이)
John Wiley & Sons Inc
65,000원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
65,000원 -0% 0원
1,950원
63,050원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
알라딘 판매자 배송 1개 90,000원 >
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Mechanics of Aircraft Structures
eBook 미리보기

책 정보

· 제목 : Mechanics of Aircraft Structures (Hardcover, 2 ed) 
· 분류 : 외국도서 > 기술공학 > 기술공학 > 우주공학
· ISBN : 9780471699668
· 쪽수 : 320쪽
· 출판일 : 2006-04-01

목차

Preface.

Preface to the First Edition.

1 Characteristics of Aircraft Structures and Materials.

1.1 Introduction.

1.2 Basic Structural Elements in Aircraft Structure.

1.2.1 Axial Member.

1.2.2 Shear Panel.

1.2.3 Bending Member (Beam).

1.2.4 Torsion Member.

1.3 Wing and Fuselage.

1.3.1 Load Transfer.

1.3.2 Wing Structure.

1.3.3 Fuselage.

1.4 Aircraft Materials.

Problems.

2 Introduction to Elasticity.

2.1 Concept of Displacement.

2.2 Strain.

2.3 Stress.

2.4 Equations of Equilibrium in a Nonuniform Stress Field.

2.5 Principal Stress.

2.6 Shear Stress.

2.7 Revisit of Transformation of Stress.

2.8 Linear Stress-Strain Relations.

2.8.1 Strains Induced by Normal Stress.

2.8.2 Strains Induced by Shear Stress.

2.8.3 Three-Dimensional Stress-Strain Relations.

2.9 Elastic Strain Energy.

2.10 Plane Elasticity.

2.10.1 Stress-Strain Relations for Plane Isotropic Solids.

2.10.2 Stress-Strain Relations for Orthotropic Solids in Plane Stress.

2.10.3 Governing Equations.

2.10.4 Solution by Airy Stress Function for Plane Isotropic Solids.

Problems.

3 Torsion.

3.1 Saint-Venant’s Principle.

3.2 Torsion of Uniform Bars.

3.3 Bars with Circular Cross-Sections.

3.4 Bars with Narrow Rectangular Cross-Sections.

3.5 Closed Single-Cell Thin-Walled Sections.

3.6 Multicell Thin-Walled Sections.

3.7 Warping in Open Thin-Walled Sections.

3.8 Warping in Closed Thin-Walled Sections.

3.9 Effect of End Constraints.

Problems.

4 Bending and Flexural Shear.

4.1 Derivation of the Simple (Bernoulli–Euler) Beam Equation.

4.2 Bidirectional Bending.

4.3 Transverse Shear Stress due to Transverse Force in Symmetric Sections.

4.3.1 Narrow Rectangular Cross-Section.

4.3.2 General Symmetric Sections.

4.3.3 Thin-Walled Sections.

4.3.4 Shear Deformation in Thin-Walled Sections.

4.4 Timoshenko Beam Theory.

4.5 Shear Lag.

Problems.

5 Flexural Shear Flow in Thin-Walled Sections.

5.1 Flexural Shear Flow in Open Thin-Walled Sections.

5.1.1 Symmetric Thin-Walled Sections.

5.1.2 Unsymmetric Thin-Walled Sections.

5.1.3 Multiple Shear Flow Junctions.

5.1.4 Selection of Shear Flow Contour.

5.2 Shear Center in Open Sections.

5.3 Closed Thin-Walled Sections and Combined Flexural and Torsional Shear Flow.

5.3.1 Shear Center.

5.3.2 Statically Determinate Shear Flow.

5.4 Closed Multicell Sections.

Problems.

6 Failure Criteria for Isotropic Materials.

6.1 Strength Criteria for Brittle Materials.

6.1.1 Maximum Principal Stress Criterion.

6.1.2 Coulomb–Mohr Criterion.

6.2 Yield Criteria for Ductile Materials.

6.2.1 Maximum Shear Stress Criterion (Tresca Yield Criterion) in Plane Stress.

6.2.2 Maximum Distortion Energy Criterion (von Mises Yield Criterion).

6.3 Fracture Mechanics.

6.3.1 Stress Concentration.

6.3.2 Concept of Cracks and Strain Energy Release Rate.

6.3.3 Fracture Criterion.

6.4 Stress Intensity Factor.

6.4.1 Symmetric Loading (Mode I Fracture).

6.4.2 Antisymmetric Loading (Mode II Fracture).

6.4.3 Relation between K and G.

6.4.4 Mixed Mode Fracture.

6.5 Effect of Crack Tip Plasticity.

6.6 Fatigue Failure.

6.6.1 Constant Stress Amplitude.

6.6.2 SN Curves.

6.6.3 Variable Amplitude Loading.

6.7 Fatigue Crack Growth.

Problems.

7 Elastic Buckling.

7.1 Eccentrically Loaded Beam-Column.

7.2 Elastic Buckling of Straight Bars.

7.2.1 Pinned–Pinned Bar.

7.2.2 Clamped–Free Bar.

7.2.3 Clamped–Pinned Bar.

7.2.4 Clamped–Clamped Bar.

7.2.5 Effective Length of Buckling.

7.3 Initial Imperfection.

7.4 Postbuckling Behavior.

7.5 Bar of Unsymmetric Section.

7.6 Torsional–Flexural Buckling of Thin-Walled Bars.

7.6.1 Nonuniform Torsion.

7.6.2 Torsional Buckling of Doubly Symmetric Section.

7.6.3 Torsional–Flexural Buckling.

7.7 Elastic Buckling of Flat Plates.

7.7.1 Governing Equation for Flat Plates.

7.7.2 Cylindrical Bending.

7.7.3 Buckling of Rectangular Plates.

7.7.4 Buckling under Shearing Stresses.

7.8 Local Buckling of Open Sections.

Problems.

8 Analysis of Composite Laminates.

8.1 Plane Stress Equations for Composite Lamina.

8.2 Off-Axis Loading.

8.3 Notation for Stacking Sequence in Laminates.

8.4 Symmetric Laminate under In-Plane Loading.

8.5 Effective Moduli for Symmetric Laminates.

8.6 Laminar Stresses.

8.7 [±45◦] Laminate.

Problems.

Index.

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책