책 이미지

책 정보
· 분류 : 외국도서 > 과학/수학/생태 > 수학 > 함수해석
· ISBN : 9780521899642
· 쪽수 : 416쪽
· 출판일 : 2020-03-12
목차
Part I. Preliminaries: 1. Vector spaces and bases; 2. Metric spaces; Part II. Normed Linear Spaces: 3. Norms and normed spaces; 4. Complete normed spaces; 5. Finite-dimensional normed spaces; 6. Spaces of continuous functions; 7. Completions and the Lebesgue spaces Lp(Ω); Part III. Hilbert Spaces: 8. Hilbert spaces; 9. Orthonormal sets and orthonormal bases for Hilbert spaces; 10. Closest points and approximation; 11. Linear maps between normed spaces; 12. Dual spaces and the Riesz representation theorem; 13. The Hilbert adjoint of a linear operator; 14. The spectrum of a bounded linear operator; 15. Compact linear operators; 16. The Hilbert?Schmidt theorem; 17. Application: Sturm?Liouville problems; Part IV. Banach Spaces: 18. Dual spaces of Banach spaces; 19. The Hahn?Banach theorem; 20. Some applications of the Hahn?Banach theorem; 21. Convex subsets of Banach spaces; 22. The principle of uniform boundedness; 23. The open mapping, inverse mapping, and closed graph theorems; 24. Spectral theory for compact operators; 25. Unbounded operators on Hilbert spaces; 26. Reflexive spaces; 27. Weak and weak-* convergence; Appendix A. Zorn's lemma; Appendix B. Lebesgue integration; Appendix C. The Banach?Alaoglu theorem; Solutions to exercises; References; Index.