logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Euclidean and Non-Euclidean Geometries: Development and History

Euclidean and Non-Euclidean Geometries: Development and History (Hardcover, 4)

(Development and History)

Marvin Jay Greenberg (지은이)
W H Freeman & Co
579,030원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
474,800원 -18% 0원
23,740원
451,060원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Euclidean and Non-Euclidean Geometries: Development and History
eBook 미리보기

책 정보

· 제목 : Euclidean and Non-Euclidean Geometries: Development and History (Hardcover, 4) (Development and History)
· 분류 : 외국도서 > 과학/수학/생태 > 수학 > 기하학 > 비유클리드 기하학
· ISBN : 9780716799481
· 쪽수 : 512쪽
· 출판일 : 2007-09-01

책 소개

This is the definitive presentation of the history, development and philosophical significance of non-Euclidean geometry as well as of the rigorous foundations for it and for elementary Euclidean geometry, essentially according to Hilbert. Appropriate for liberal arts students, prospective high school teachers, math. majors, and even bright high school students. The first eight chapters are mostly accessible to any educated reader; the last two chapters and the two appendices contain more advanced material, such as the classification of motions, hyperbolic trigonometry, hyperbolic constructions, classification of Hilbert planes and an introduction to Riemannian geometry.

목차

Chapter 1 Euclid's Geometry.- Very Brief Survey of the Beginnings of Geometry.- The Pythagoreans.- Plato?.- Euclid of Alexandria?.- The Axiomatic Method?.- Undefined Terms?.- Euclid's First Four Postulates?.- The Parallel Postulate?.- Attempts to Prove the Parallel Postulate?.- The Danger in Diagrams?.- The Power of Diagrams?.- Straightedge-and-Compass Constructions, Briefly?.- Descartes' Analytic Geometry and Broader Idea of Constructions?.- Briefly on the Number ð?.- Conclusion Chapter 2 Logic and Incidence Geometry.- Elementary Logic?.- Theorems and Proofs.- RAA Proofs?.- Negation?.- Quantifiers?.- Implication?.- Law of Excluded Middle and Proof by Cases?.- Brief Historical Remarks?.- Incidence Geometry?.- Models?.- Consistency?.- Isomorphism of Models.- Projective and Affine Planes?.- Brief History of Real Projective Geometry?.- Conclusion Chapter 3 Hilbert's Axioms.- Flaws in Euclid?.- Axioms of Betweenness?.- Axioms of Congruence.- Axioms of Continuity.- Hilbert's Euclidean Axiom of Parallelism?.- Conclusion Chapter 4 Neutral Geometry?.- Geometry without a Parallel Axiom?.- Alternate Interior Angle Theorem?.- Exterior Angle Theorem?.- Measure of Angles and Segments?.- Equivalence of Euclidean Parallel Postulates?.- Saccheri and Lambert Quadrilaterals?.- Angle Sum of a Triangle?.- Conclusion Chapter 5 History of the Parallel Postulate?.- Review?.- Proclus?.- Equidistance?.- Wallis?.- Saccheri?.- Clairaut's Axiom and Proclus' Theorem?.- Legendre?.- Lambert and Taurinus?.- Farkas Bolyai Chapter 6 The Discovery of Non-Euclidean Geometry<.- Janos Bolyai?.- Gauss?.- Lobachevsky?.- Subsequent Developments?.- Non-Euclidean Hilbert Planes?.- The Defect?.- Similar Triangles?.- Parallels Which Admit a Common Perpendicular?.- Limiting Parallel Rays, Hyperbolic Planes?.- Classification of Parallels?.- Strange New Universe? Chapter 7 Independence of the Parallel Postulate?.- Consistency of Hyperbolic Geometry?.- Beltrami's Interpretation?.- The Beltrami-Klein Model?.- The Poincare Models?.- Perpendicularity in the Beltrami-Klein Model?.- A Model of the Hyperbolic Plane from Physics?.- Inversion in Circles, Poincare Congruence?.- The Projective Nature of the Beltrami-Klein Model?.- Conclusion Chapter 8 Philosophical Implications, Fruitful Applications.- What Is the Geometry of Physical Space??.- What Is Mathematics About??.- The Controversy about the Foundations of Mathematics?.- The Meaning?.- The Fruitfulness of Hyperbolic Geometry for Other Branches of Mathematics, Cosmology, and Art Chapter 9 Geometric Transformations.- Klein's Erlanger Programme?.- Groups?.- Applications to Geometric Problems?.- Motions and Similarities?.- Reflections?.- Rotations?.- Translations?.- Half-Turns Ideal Points in the Hyperbolic Plane?.- Parallel Displacements?.- Glides?.- Classification of Motions?.- Automorphisms of the Cartesian Model?.- Motions in the Poincare Model?.- Congruence Described by Motions?.- Symmetry?Chapter 10 Further Results in Real Hyperbolic Geometry.- Area and Defect?.- The Angle of Parallelism?.- Cycles??.- The Curvature of the Hyperbolic Plane??.- Hyperbolic Trigonometry??.- Circumference and Area of a Circle??.- Saccheri and Lambert Quadrilaterals??.- Coordinates in the Real Hyperbolic Plane??.- The Circumscribed Cycle of a Triangle??.- Bolyai's Constructions in the Hyperbolic Plane?Appendix A.- Appendix B.- Axioms.- Bibliography.- Symbols.- Name Index.- Subject Index DIV>.

저자소개

Marvin Jay Greenberg (지은이)    정보 더보기
펼치기
이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책