logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Risk Analysis Foundations, Models, and Methods

Risk Analysis Foundations, Models, and Methods (Hardcover, 2002)

Louis Anthony Cox, Jr. (지은이)
Kluwer Academic Pub
307,470원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
252,120원 -18% 0원
12,610원
239,510원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Risk Analysis Foundations, Models, and Methods
eBook 미리보기

책 정보

· 제목 : Risk Analysis Foundations, Models, and Methods (Hardcover, 2002) 
· 분류 : 외국도서 > 의학 > 건강 위해성 평가
· ISBN : 9780792376156
· 쪽수 : 556쪽
· 출판일 : 2001-11-30

목차

1: Introduction and Basic Risk Models. 1: Introduction. 1.1. Distinguishing Characteristics Of Risk Analysis. 1.2. The Traditional Health Risk Analysis Framework. 1.3. Defining Risks: Source, Target, Effect, Mechanism. 2: Basic Quantitative Risk Models. 2.1. Risk as Probability of a Binary Event. 2.2. A Binary Event with Time: Hazard Rate Models. 2.3. Calculating and Interpreting Hazard Functions. 2.4. Hazard Models for Binary Events. 2.5. Probabilities of Causation for a Binary Event. 2.6. Risk Models with Non-Binary Consequences. 3: Health Risks from Human Activities. 3.1. Risk Management Decision Support Sub-Models. 2: Risk Assessment Modeling. 1: Introduction. 1.1. Approaches to QRA: Probability, Statistical, Engineering. 2: Conditional Probability Framework for Risk Calculations. 2.1. Calculating Average Individual Risks when Individuals Respond. 2.2. Population Risks Modeled by Conditional Probabilities. 2.3. Trees, Risks and Martingales. 2.4. Value of Information in Risk Management Decisions. 3: Basic Engineering Modeling Techniques. 3.1. Compartmental Flow Simulation Models. 3.2. Applications to Pharmacokinetic Models. 3.3. Monte Carlo Uncertainty Analysis. 3.4. Applied Probability and Stochastic Transition Models. 4: Introduction to Exposure Assessment. 5: A Case Study: Simulating Food Safety. 5.1. Background: The Potential Human Health Hazard. 5.2. Risk Management Setting: Many Decisions Affect Risk. 5.3. Methods and Data: Overviewof Simulation Model. 5.4. Results: Baseline and Sensitivity Analysis of Options. 5.5. Uncertainty Analysis and Discussion. 5.6: Conclusions. 3: Statistical Risk Modeling. 1: Introduction. 2: Statistical Dose-Response Modeling. 2.1. Define Exposure and Response Variables, Collect Data. 2.2. Select a Model Form for the Dose-Response Relation. 2.3. Estimate Risk, Confidence Limits, and Model Fit. 2.4. Interpret Results. 3: Progress in Statistical Risk Modeling. 3.1. Dealing with Model Uncertainty and Variable Selection. 3.2. Dealing with Missing Data: New Algorithms and Ideas. 3.3. Mixture Distribution Models for Unobserved Variables. 3.4. Summary of Advances in Statistical Risk Modeling. 4: A Statistical Case Study: Soil Sampling. 4: Causality. 1: Introduction. 2: Statistical vs. Causal Risk Modeling. 3: Criteria for Causation. 3.1. Traditional Epidemiological Criteria for Causation. 3.2. Proposed Criteria for Inferring Probable Causation. 3.3. Bayesian Evidential Reasoning and Refutationism. 4: Testing Causal Graph Models with Data. 4.1. Causal Graph Models and Knowledge Representation. 4.2. Meaning of Causal Graphs. 4.3. Testing Hypothesized Causal Graph Structures. 4.4. Creating Causal Graph Structures from Data. 4.5. Search, Optimization, and Model-Averaging Heuristics. 5: Using Causal Graphs in Risk Analysis. 5.1. Drawing Probabilistic Inferences in DAG Models. 5.2. Applications of DAG Inferences in Risk Assessment. 5.3.

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책