책 이미지
책 정보
· 분류 : 외국도서 > 기술공학 > 기술공학 > 전기공학
· ISBN : 9780792380931
· 쪽수 : 276쪽
· 출판일 : 1997-11-30
목차
1: Propagation of Digital Excitation in the Gate Field. 1.01. Introduction. 1.02. Examples of the Gate Field. 1.03. The Vector Gate Field. 1.04. Energy Transfer in Gate Field. 1.05. CMOS Inverter Switching Process. 1.06. The Velocity of the Propagation of Excitation. 1.07. An Equation of the Motion of Excitation. 1.08. Node Waveform of Logic Circuits. 1.09. Logic Threshold Voltage and Gate Delay Time. 1.10. Nonmonotonous Node-Switching Voltage Waveform. 1.11. The Strange Consequences of the Classical Delay-Time Definition. 1.12. The Phase Transition of the Gate Field. 1.13. The Miller Effect in the Gate Field. 1.14. Feedforward Excitation Transmission. 1.15. The Gate Field of a Negative-Resistance Diode. 2: Quantum Mechanics of Digital Excitation. 2.01. Introduction. 2.02. Elementary and Composite Excitation. 2.03. Finite and Infinite Energy Associated with Excitation. 2.04. An Eigenvalue Problem in the Gate Field. 2.05. The Eigensolution of a Gate-Field Waveform. 2.06. Gate-Field Variable Measurements. 2.07. Latch Circuit for Boolean-Level Determination. 2.08. The Decision Threshold. 2.09. The Probabilistic Interpretation of Boolean Level. 2.10. Metastability in Observation. 2.11. Propagation of Excitation through a Nonuniform Field. 2.12. The Tunnel Effect of Digital Excitation. 2.13. Ambiguity in the Cause and Effect Relationship. 2.14. Valid Delay-Time Measurement of the Digital Circuit. 2.15. The Quantum-Mechanical Delay Definition. 2.16. Design Guidelines for Ultrafast Circuits. 2.17. Natural Decay of Composite Excitation. 2.18. A Theory of the Decay of Isolated Pulses. 2.19. Mass of Digital Excitation. 2.20. The Dynamics of Digital Excitation in Closed Path. 3: The Macrodynamics of Digital Excitation. 3.01. Introduction. 3.02. Quantum States. 3.03. Bohr's Correspondence Principle. 3.04. States of Nodes and Circuits. 3.05. The Capability of a Circuit to Store Information. 3.06. Information Stored in a Ring. 3.07. Extraction of the Features of Data Pattern. 3.08. Digital Excitation in a Closed Path. 3.09. Multiple Ringoscillators. 3.10. A General Observation of Ringoscillator Dynamics. 3.11. Modes of Oscillation. 3.12. A State-Space Representation. 3.13. The Practical Significance of Ringoscillator Logic. 3.14. An Asynchronous Multiloop Ringoscillator. 3.15. The Precision of an FET Model and Simulator. 3.16. Conclusion. 3.17. The Future Direction of Digital-Circuit Research.














