logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Regression Estimators: A Comparative Study

Regression Estimators: A Comparative Study (Hardcover, 2)

Marvin H. J. Gruber (지은이)
Johns Hopkins Univ Pr
227,450원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
알라딘 로딩중
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Regression Estimators: A Comparative Study
eBook 미리보기

책 정보

· 제목 : Regression Estimators: A Comparative Study (Hardcover, 2) 
· 분류 : 외국도서 > 과학/수학/생태 > 수학 > 확률과 통계 > 회귀분석
· ISBN : 9780801894268
· 쪽수 : 424쪽
· 출판일 : 2010-06-17

목차

Preface
Part I: Introduction and Mathematical Preliminaries
1. Introduction
1.1. The Purpose of This Book
1.2. Least Square Estimators and the Need for Alternatives
1.3. Historical Survey
1.4. The Structure of the Book
2. Mathematical and Statistical Preliminaries
2.0. Introduction
2.1. Matrix Theory Results
2.2. The Bayes Estimator (BE)
2.3. Admissible Estimators
2.4. The Minimax Estimator
2.5. Criterion for Comparing Estimators: Theobald's 1974 Result
2.6. Some Useful Inequalities: Some Miscellaneous Useful Matrix Results
2.7. Summary
Part II: The Estimators, Their Derivations, and Their Relationships
3. The Estimators
3.0. The Least Square Estimator and Its Properties
3.1. The Generalized Ridge Regression Estimator
3.2. The Mixed Estimators
3.3. The Linear Minimax Estimator
3.4. The Bayes Estimator
3.6. Summary
4. How the Different Estimators Are Related
4.0. Introduction
4.1. Alternative Forms of the Bayes Estimator Full-Rank Case
4.2. Alternative Forms of the Bayes Estimator Non-Full-Rank Case Estimable Parametric Functions
4.3. Equivalence of the Generalized Ridge Estimator and the BayesEstimator
4.4. Equivalence of the Mixed Estimator and the Bayes Estimator
4.5. Ridge Estimators in the Literature as Special Cases of the BE, Minimax Estimators, or Mixed Estimators
4.6. An Extension of the Gauss-Markov Theorem
4.7. Generalities
4.8. Summary
Part III: Comparing the Efficiency of the Estimators
5. Measures of Efficiency of the Estimators
5.0. Introduction
5.1. The Different Kinds of Mean Square Error
5.2. Zellner's Balanced Loss Function
5.3. The LINEX Loss Function
5.4. Linear Admissibility
5.5. Summary
6. The Average Mean Square Error
6.0. Introduction
6.1. The Forms of the MSE for the Minimax, Bayes, and Mixed Estimators
6.2. The Relationship between the Average Variance and the MSE
6.3. The Average MSE of the Bayes Estimator
6.4. Alternative Forms of the MSE of the Mixed Estimator
6.5. Comparison of the MSE of Different BEs
6.6. Comparison of the MSE of the Ridge and Contraction Estimators
6.7. Comparison of the Average MSE of the Two-Parameter Liu Estimator and the Ordinary Ridge Regression Estimator
6.8. Summary
7. The MSE Neglecting the Prior Assumptions
7.0. Introduction
7.1. The MSE of the BE
7.2. The MSE of the Mixed Estimators Neglecting PriorAssumptions
7.3. Comparison of the Conditional MSE of the Bayes and Least Square Estimators and Comparison of the Conditional and Average MSE
7.4. Comparison of the MSE of a Mixed Estimator with That of the LS Estimators
7.5. Comparison of the MSE of Two Bayes Estimators
7.6. Summary
8. The MSE for Incorrect Prior Assumptions
8.0. Introduction
8.1. The Bayes Estimator and Its MSE
8.2. The Minimax Estimator
8.3. The Mixed Estimator
8.4. Contaminated Priors
8.5. Contaminated (Mixed) Bayes Estimators
8.6. Summary
Part IV: Applications
9. The Kalman Filter
9.0. Introduction
9.1. The Kalman Filter as a Bayes Estimator
9.2. The Kalman Filter as a Recursive Least Square Estimator,and the Connection with the Mixed Estimator
9.3. The Minimax Estimator
9.4. The Generalized Ridge Estimator
9.5. The Average Mean Square Error
9.6. The MSE for Incorrect Initial Prior Assumptions
9.7. Applications
9.8. Recursive Ridge Regression
9.9. Summary
10. Experimental Design Models
10.0. Introduction
10.1. The One-Way ANOVA Model
10.2. The Bayes and Empirical Bayes Estimators
10.3. The Two- Way Classification
10.4. The Bayes and Empirical Bayes Estimators
10.5. Summary
Appendix to Section 10.2. Calculation of the MSE of Section 10.2
11. How Penalized Splines and Ridge- Type EstimatorsAre Related
11.0. Introduction
11.1. Splines as a Special Kind of Regression Model
11.2. Penalized Splines
11.3. The Best Linear Unbiased Predictor (BLUP)
11.4. Two Examples
11.5. Summary
Part V: Alternative Measures of Efficiency
12. Estimation Using Zellner's Balanced Loss Function
12.0. Introduction
12.1. Zellner's Balanced Loss Function
12.2. The Estimators from Different Points of View
12.3. The Average Mean Square Error
12.4. The Risk without Averaging over a Prior Distribution
12.5. Some Optimal Ridge Estimators
12.6. Summary
13. The LINEX and Other Asymmetric Loss Functions
13.0. Introduction
13.1. The LINEX Loss Function
13.2. The Bayes Risk for a Regression Estimator
13.3. The Frequentist Risk
13.4. Summary
14. Distances between Ridge-Type Estimators, andInformation Geometry
14.0. Introduction
14.1. The Relevant Differential Geometry
14.2. The Distance between Two Linear Bayes Estimators, Based on the Prior Distributions
14.3. The Distance between Distributions of Ridge-Type Estimators from a Non-Bayesian Point of View
14.4. Distances between the Mixed Estimators
14.5. An Example Using the Kalman Filter
14.6. Summary
References
Author Index
Subject Index

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책