logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

The Practical Handbook of Genetic Algorithms: New Frontiers, Volume II

The Practical Handbook of Genetic Algorithms: New Frontiers, Volume II (Hardcover)

Lance D. Chambers (엮은이)
CRC Pr I Llc
382,000원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
313,240원 -18% 0원
15,670원
297,570원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

The Practical Handbook of Genetic Algorithms: New Frontiers, Volume II
eBook 미리보기

책 정보

· 제목 : The Practical Handbook of Genetic Algorithms: New Frontiers, Volume II (Hardcover) 
· 분류 : 외국도서 > 컴퓨터 > 프로그래밍 > 일반
· ISBN : 9780849325298
· 쪽수 : 448쪽
· 출판일 : 1995-08-15

목차

Contents Introduction Multi-Niche Crowding for Multi-modal Search Introduction Genetic Algorithms for Multi-modal Search Application of MNC to Multi-modal Test Functions Application to DNA Restriction Fragment Map Assembly Results and Discussion Conclusions Previous Related Work and Scope of Present Work Appendix Artificial Neural Network Evolution: Learning to Steer a Land Vehicle Overview Introduction to Artificial Neural Networks Introduction to ALVINN The Evolutionary Approach Task Specifics Implementation and Results Conclusions Future Directions Locating Putative Protein Signal Sequences Introduction Implementation Results of Sample Applications Parametrization Study Future Directions Selection Methods for Evolutionary Algorithms Fitness Proportionate Selection (FPS) Windowing Sigma Scaling Linear Scaling Sampling Algorithms Ranking Linear Ranking Exponential Ranking Tournament Selection Genitor or Steady State Models Evolution Strategy and Evolutionary Programming Methods Evolution Strategy Approaches Top-n Selection Evolutionary Programming Methods The Effects of Noise Conclusions References Parallel Cooperating Genetic Algorithms: An Application to Robot Motion Planning Introduction Principles of Genetic Algorithms The Search Algorithm The Explore Algorithm The Ariadne’s CLEW Algorithm Parallel Implementation Conclusion, Results, and Perspective The Boltzmann Selection Procedure Introduction Empirical Analysis Introduction to Boltzmann Selection Theoretical Analysis Discussion and Related Work Conclusion Structure and Performance of Fine-Grain Parallelism in Genetic Search Introduction Three Fine-Grain Parallel GA Topologies Performance of fgpGAs and cgpGAs Future Directions Parameter Estimation for a Generalized Parallel Loop Scheduling Algorithm Introduction Current Scheduling Algorithms A New Scheduling Methodology Results Conclusion Controlling a Dynamic Physical System Using Genetic-based Learning Methods Introduction The Control Task Previous Learning Algorithms for the Pole-Cart Problem Genetic Algorithms (GA) Generating Control Rules Using a Simple GA Implementation Details Experimental Results Difficulties with GAPOLE Approach A Different Genetic Approach for the Problem The Structured Genetic Algorithm Evolving Neuro-controllers Using sGA Fitness Measure and Reward Scheme Simulation Results Discussion A Hybrid Approach Using Neural Networks, Simulation, Genetic Algorithms, and Machine Learning for Real-time Sequencing and Scheduling Problems Introduction Hierarchical Generic Controller Implementing the Optimization Function An Example Remarks Chemical Engineering Introduction Case Study 1: Best Controller Synthesis Using Qualitative Criteria Case Study 2: Optimization of Back Mix Reactors in Series Case Study 3: Solution of Lattice Model to Predict Adsorption of Polymer Molecules Comparison with Other Techniques Vehicle Routing with Time Windows Using Genetic Algorithms Introduction Mathematical Formulation for the VRPTW The GIDEON System Computational Results Summary and Conclusions Evolutionary Algorithms and Dialogue Introduction Methodology Evolutionary Algorithms Natural Language Processing Dialogue in LOLITA Tuning the Parameters Target Dialogues Application of EAs to LOLITA Results Improving the Fitness Function Discussion Summary References Incorporating Redundancy and Gene Activation Mechanisms in Genetic Search for Adapting to Non-Stationary Environments Introduction The Structured GA Use of sGA in a Time-varying Problem Experimental Details Conclusions Input Space Segmentation with a Genetic Algorithm for Generation of Rule-based Classifier Systems Introduction A Heuristic Method Genetic Algorithm Based Method Results Appendix I: An Indexed Bibliography of Genetic Algorithms Appendix II: Publications Contract

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책