logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Bayesian Statistical Methods

Bayesian Statistical Methods (Paperback, 1)

Sujit K. Ghosh (지은이)
Chapman and Hall/CRC
107,470원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
88,120원 -18% 0원
4,410원
83,710원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Bayesian Statistical Methods
eBook 미리보기

책 정보

· 제목 : Bayesian Statistical Methods (Paperback, 1) 
· 분류 : 외국도서 > 경제경영 > 통계
· ISBN : 9781032093185
· 쪽수 : 288쪽
· 출판일 : 2021-06-30

목차

1. Basics of Bayesian Inference Probability background Univariate distributions Discrete distributions Continuous distributions Multivariate distributions Marginal and conditional distributions Bayes' Rule Discrete example of Bayes' Rule Continuous example of Bayes' Rule Introduction to Bayesian inference Summarizing the posterior Point estimation Univariate posteriors Multivariate posteriors The posterior predictive distribution Exercises 2. From Prior Information to Posterior Inference Conjugate Priors Beta-binomial model for a proportion Poisson-gamma model for a rate Normal-normal model for a mean Normal-inverse gamma model for a variance Natural conjugate priors Normal-normal model for a mean vector Normal-inverse Wishart model for a covariance matrix Mixtures of conjugate priors Improper Priors Objective Priors Jeffreys prior Reference Priors Maximum Entropy Priors Empirical Bayes Penalized complexity priors Exercises 3. Computational approaches Deterministic methods Maximum a posteriori estimation Numerical integration Bayesian Central Limit Theorem (CLT) Markov Chain Monte Carlo (MCMC) methods Gibbs sampling Metropolis-Hastings (MH) sampling MCMC software options in R Diagnosing and improving convergence Selecting initial values Convergence diagnostics Improving convergence Dealing with large datasets Exercises 4. Linear models Analysis of normal means One-sample/paired analysis Comparison of two normal means Linear regression Jeffreys prior Gaussian prior Continuous shrinkage priors Predictions Example: Factors that affect a home's microbiome Generalized linear models Binary data Count data Example: Logistic regression for NBA clutch free throws Example: Beta regression for microbiome data Random effects Flexible linear models Nonparametric regression Heteroskedastic models Non-Gaussian error models Linear models with correlated data Exercises 5. Model selection and diagnostics Cross validation Hypothesis testing and Bayes factors Stochastic search variable selection Bayesian model averaging Model selection criteria Goodness-of-fit checks Exercises 6. Case studies using hierarchical modeling Overview of hierarchical modeling Case study: Species distribution mapping via data fusion Case study: Tyrannosaurid growth curves Case study: Marathon analysis with missing data 7. Statistical properties of Bayesian methods Decision theory Frequentist properties Bias-variance tradeoffAsymptotics Simulation studies Exercises AppendicesProbability distributions Univariate discrete Multivariate discrete Univariate continuous Multivariate continuous List of conjugacy pairs Derivations Normal-normal model for a mean Normal-normal model for a mean vector Normal-inverse Wishart model for a covariance matrix Jeffreys' prior for a normal model Jeffreys' prior for multiple linear regression Convergence of the Gibbs sampler Marginal distribution of a normal mean under Jeffreys’ prior Marginal posterior of the regression coefficients under Jeffreys prior Proof of posterior consistency Computational algorithms Integrated nested Laplace approximation (INLA) Metropolis-adjusted Langevin algorithm Hamiltonian Monte Carlo (HMC) Delayed Rejection and Adaptive Metropolis Slice sampling Software comparison Example - Simple linear regression Example - Random slopes model

저자소개

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책