logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Stochastic Optimization for Large-scale Machine Learning

Stochastic Optimization for Large-scale Machine Learning (Paperback, 1)

Vinod Kumar (지은이)
CRC Press
124,120원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
101,770원 -18% 0원
5,090원
96,680원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Stochastic Optimization for Large-scale Machine Learning
eBook 미리보기

책 정보

· 제목 : Stochastic Optimization for Large-scale Machine Learning (Paperback, 1) 
· 분류 : 외국도서 > 경제경영 > 운영분석
· ISBN : 9781032146140
· 쪽수 : 176쪽
· 출판일 : 2024-10-07

목차

List of Figures
List of Tables
Preface 


Section I BACKGROUND

Introduction
1.1 LARGE-SCALE MACHINE LEARNING 
1.2 OPTIMIZATION PROBLEMS 
1.3 LINEAR CLASSIFICATION
1.3.1 Support Vector Machine (SVM) 
1.3.2 Logistic Regression 
1.3.3 First and Second Order Methods
1.3.3.1 First Order Methods 
1.3.3.2 Second Order Methods 
1.4 STOCHASTIC APPROXIMATION APPROACH 
1.5 COORDINATE DESCENT APPROACH 
1.6 DATASETS 
1.7 ORGANIZATION OF BOOK 

Optimisation Problem, Solvers, Challenges and Research Directions
2.1 INTRODUCTION 
2.1.1 Contributions 
2.2 LITERATURE 
2.3 PROBLEM FORMULATIONS 
2.3.1 Hard Margin SVM (1992) 
2.3.2 Soft Margin SVM (1995) 
2.3.3 One-versus-Rest (1998) 
2.3.4 One-versus-One (1999) 
2.3.5 Least Squares SVM (1999) 
2.3.6 v-SVM (2000) 
2.3.7 Smooth SVM (2001) 
2.3.8 Proximal SVM (2001) 
2.3.9 Crammer Singer SVM (2002) 
2.3.10 Ev-SVM (2003) 
2.3.11 Twin SVM (2007) 
2.3.12 Capped lp-norm SVM (2017) 
2.4 PROBLEM SOLVERS 
2.4.1 Exact Line Search Method 
2.4.2 Backtracking Line Search 
2.4.3 Constant Step Size 
2.4.4 Lipschitz & Strong Convexity Constants 
2.4.5 Trust Region Method 
2.4.6 Gradient Descent Method 
2.4.7 Newton Method 
2.4.8 Gauss-Newton Method 
2.4.9 Levenberg-Marquardt Method 
2.4.10 Quasi-Newton Method 
2.4.11 Subgradient Method 
2.4.12 Conjugate Gradient Method 
2.4.13 Truncated Newton Method 
2.4.14 Proximal Gradient Method 
2.4.15 Recent Algorithms 
2.5 COMPARATIVE STUDY 
2.5.1 Results from Literature 
2.5.2 Results from Experimental Study 
2.5.2.1 Experimental Setup and Implementation Details 
2.5.2.2 Results and Discussions 
2.6 CURRENT CHALLENGES AND RESEARCH DIRECTIONS 
2.6.1 Big Data Challenge 
2.6.2 Areas of Improvement 
2.6.2.1 Problem Formulations 
2.6.2.2 Problem Solvers 
2.6.2.3 Problem Solving Strategies/Approaches 
2.6.2.4 Platforms/Frameworks 
2.6.3 Research Directions 
2.6.3.1 Stochastic Approximation Algorithms 
2.6.3.2 Coordinate Descent Algorithms 
2.6.3.3 Proximal Algorithms 
2.6.3.4 Parallel/Distributed Algorithms 
2.6.3.5 Hybrid Algorithms 
2.7 CONCLUSION 


Section II FIRST ORDER METHODS
Mini-batch and Block-coordinate Approach 
3.1 INTRODUCTION 
3.1.1 Motivation 
3.1.2 Batch Block Optimization Framework (BBOF) 
3.1.3 Brief Literature Review 
3.1.4 Contributions 
3.2 STOCHASTIC AVERAGE ADJUSTED GRADIENT (SAAG) METHODS
3.3 ANALYSIS 
3.4 NUMERICAL EXPERIMENTS 
3.4.1 Experimental setup 
3.4.2 Convergence against epochs 
3.4.3 Convergence against Time 
3.5 CONCLUSION AND FUTURE SCOPE 

Variance Reduction Methods 
4.1 INTRODUCTION 
4.1.1 Optimization Problem 
4.1.2 Solution Techniques for Optimization Problem 
4.1.3 Contributions 
4.2 NOTATIONS AND RELATED WORK 
4.2.1 Notations 
4.2.2 Related Work 
4.3 SAAG-I, II AND PROXIMAL EXTENSIONS 
4.4 SAAG-III AND IV ALGORITHMS 
4.5 ANALYSIS 
4.6 EXPERIMENTAL RESULTS 
4.6.1 Experimental Setup 
4.6.2 Results with Smooth Problem 
4.6.3 Results with non-smooth Problem 
4.6.4 Mini-batch Block-coordinate versus mini-batch setting 
4.6.5 Results with SVM 
4.7 CONCLUSION 

Learning and Data Access 
5.1 INTRODUCTION 
5.1.1 Optimization Problem 
5.1.2 Literature Review 
5.1.3 Contributions 
5.2 SYSTEMATIC SAMPLING 
5.2.1 Definitions 
5.2.2 Learning using Systematic Sampling 
5.3 ANALYSIS 
5.4 EXPERIMENTS 
5.4.1 Experimental Setup 
5.4.2 Implementation Details 
5.4.3 Results 
5.5 CONCLUSION 

Section III SECOND ORDER METHODS

Mini-batch Block-coordinate Newton Method 
6.1 INTRODUCTION 
6.1.1 Contributions 
6.2 MBN 
6.3 EXPERIMENTS 
6.3.1 Experimental Setup 
6.3.2 Comparative Study 
6.4 CONCLUSION 

Stochastic Trust Region Inexact Newton Method 
7.1 INTRODUCTION 
7.1.1 Optimization Problem 
7.1.2 Solution Techniques 
7.1.3 Contributions 
7.2 LITERATURE REVIEW 
7.3 TRUST REGION INEXACT NEWTON METHOD 
7.3.1 Inexact Newton Method 
7.3.2 Trust Region Inexact Newton Method 
7.4 STRON 
7.4.1 Complexity 
7.4.2 Analysis 
7.5 EXPERIMENTAL RESULTS 
7.5.1 Experimental Setup 
7.5.2 Comparative Study 
7.5.3 Results with SVM 
7.6 EXTENSIONS 
7.6.1 PCG Subproblem Solver 1
7.6.2 Stochastic Variance Reduced Trust Region Inexact Newton Method 
7.7 CONCLUSION 


Section IV CONCLUSION
Conclusion and Future Scope 
8.1 FUTURE SCOPE 142

Bibliography

Index

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책