logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

일간
|
주간
|
월간

실시간 검색어

검색가능 서점

도서목록 제공

Graph Learning and Network Science for Natural Language Processing

Graph Learning and Network Science for Natural Language Processing (Hardcover, 1)

Amit Kumar Gupta, Prasad Rajesh, Muskan Garg (엮은이)
CRC Press
271,680원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
222,770원 -18% 0원
11,140원
211,630원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Graph Learning and Network Science for Natural Language Processing
eBook 미리보기

책 정보

· 제목 : Graph Learning and Network Science for Natural Language Processing (Hardcover, 1) 
· 분류 : 외국도서 > 컴퓨터 > 데이터베이스 관리 > 일반
· ISBN : 9781032224565
· 쪽수 : 272쪽
· 출판일 : 2022-12-28

목차

Chapter 1. Graph of Words model for Natural Language ProcessingSharayu Mirasdar, Mangesh Bedekar 1.1Introduction1.2Machine Learning and Text Modelling1.3BAG OF WORDS (Bow) Model1.4GRAPH OF WORDS (Gow) MODEL1.5Discussion and Future Scope 1.6References Chapter 2.Application of NLP using Graph approachesDr. Narendra Singh Yadav, Siddharth Jain, Archit Gupta, Devansh Srivastava 2.1.Introduction2.2.Introducing graph methods to NLP applications2.3.Major Processes of NLP using graphical approach and their applications in real-world2.4. Machine Analysis2.5.Discourse Analysis2.6.Conclusion & Future Scope of NLP2.7.Datasets for NLP Applications2.8. References Chapter 3.Graph Based Extractive Approach for English and Hindi Text SummarizationRekha Jain, Manisha , Pratistha Mathur, Surabhi Bhatia 3.1Abstract3.2Introduction3.3Literature Survey3.4Graph Based Algorithm3.5TF-IDF Algorithm3.6Methodology3.7Experimental Results3.8Conclusion & Future Directions Chapter 4Graph Embeddings for Natural Language ProcessingMs. Jyoti Gavhane, Rajesh Prasad, Rajeev Kumar 4.1Introduction4.2Computational techniques4.3The Singular Value Decomposition for “Graph embeddings”4.4Predictive Methods 4.5More techniques: Embeddings4.6Conclusion4.7Case Study: Neo4j Lab Implementations4.8References Chapter 5Natural Language Processing with Graph and Machine Learning Algorithms based Large Scale Text documents Summarization and Its Applications.Dr. Shaikh Ashfaq Amir, Dr. Pathan Mohd. Shafi, Dr Vinod. V. Kimbahune, Dr. Vijaykumar S Bidve 5.1Abstract5.2Introduction5.3Text Summarization and Machine Learning5.4Literature Survey5.5Gap analysis5.6Problem Statement5.7System Architecture5.8Conclusion5.9References Chapter 6Ontology and Knowledge Graphs for Semantic Analysis in Natural Language ProcessingUjwala Bharambe, Chhaya Narvekar, Prakash Andugula 6.1Abstract6.2Introduction6.3Background 6.4Semantic Technologies6.5State-of ?survey of ontological semantic analysis6.6Summary6.7References Chapter 7Ontology and Knowledge Graphs for Natural Language ProcessingJayashree Prasad, Rahesha Mulla, Namrata Naikwade ,B. Suresh Kumar , Suresh Shanmugasundaram 7.1Introduction 7.2Natural Language Processing 7.3Ontology and Knowledge graph for NLP7.4Ontological languages7.5Conclusion7.6References Chapter 8Perfect Coloring by HB Color Matrix Algorithm MethodA A Bhange, H R Bhapkar8.1Introduction8.2Preliminaries8.3Results8.4Illustration of Perfect HB Color Matrix Method8.5Python Program For Graph Coloring By PHBCM8.6Conclusion8.7References Chapter 9Cross-Lingual Word Sense Disambiguation using multilingual co-occurrence graphsDr. Neha Janu, Anjali Singh, , Dr. Meenakshi Nawal, Dr. Sunita Gupta, Tapesh Kumar, Dr. Vijendra Singh9.1Abstract9.2Introduction9.3Evaluation of WSD9.4Approaches to Word Sense Disambiguation (WSD) 9.5Graph-based Cross-Lingual Word Sense Disambiguation.9.6Applications of WSD.9.7Conclusion and Future Scope9.8References Chapter 10Study of Current Learning Techniques for Natural Language Processing for Early Detection of Lung CancerVanita D. Jadhav, Dr. Lalit V. Patil 10.1Introduction10.2Rationale and significance of the study10.3Motivation10.4Learning Techniques10.5Related Work10.6Discussion 10.7Conclusion10.8References Chapter 11A Critical Analysis of Graph Topologies for Natural Language Processing and its ApplicationsDr. Meenakshi Nawal, Dr. Sunita Gupta ,Dr. Neha Janu, Carlos M. Travieso-Gonzalez 11.1Introduction11.2Natural Language Processing11.3Tools and Libraries for NLP11.4Graph of words and graph based natural language generation11.5Graphs Embeddings in NLP11.6Graph Topologies for NLP Applications11.7Conclusion and future Work11.8References Chapter 12Graph based text document extractive summarizationDr. Sheetal Sonawane 12.1Abstract12.2Introduction12.3Extractive summarization12.4Graph based Extractive summarization methods12.5Conclusion Chapter 13Applications of Graphical Natural Language ProcessingDr. C.Nalini, S.V.Gayetri Devi, Dr. K.G.S. Venkatesan 13.1Abstract13.2Towards Graph Theory in Natural Language Processing13.3Text Summarization13.4Keyword Extraction13.5Graph Oriented Topic Analysis13.6Topic Segmentation13.7Discourse Relationships13.8Machine Translation13.9Multilingual Retrieval of Information Based On Graphs13.10Information Retrieval Using Graphs13.11Graph Based Question Answering13.12References Chapter 14Analysis of Medical Images using Machine Learning TechniquesDr.Nikita Jain, Mr.Mahesh Kumar Joshi, Dr.Vishal Jain, Ms. Reena Sharma14.1Abstract14.2Introduction14.3Literature Survey14.4Problem Domain And Proposed Solution14.5Implementation14.6Result Analysis14.7Conclusion and Future Work14.8References:

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책