logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Multiple Regression and Beyond : An Introduction to Multiple Regression and Structural Equation Modeling

Multiple Regression and Beyond : An Introduction to Multiple Regression and Structural Equation Modeling (Paperback, 4 ed)

Matthew Reynolds, Timothy Z. Keith, Jacqueline Caemmerer (지은이)
Routledge
183,120원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
150,150원 -18% 0원
7,510원
142,640원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Multiple Regression and Beyond : An Introduction to Multiple Regression and Structural Equation Modeling
eBook 미리보기

책 정보

· 제목 : Multiple Regression and Beyond : An Introduction to Multiple Regression and Structural Equation Modeling (Paperback, 4 ed) 
· 분류 : 외국도서 > 교육/자료 > 참고자료 > 연구
· ISBN : 9781032520971
· 쪽수 : 712쪽
· 출판일 : 2025-09-29

목차

Preface
Notes for the Fourth Edition
Acknowledgments


Part I: Multiple Regression
Chapter 1: Simple bivariate regression
Chapter 2: Multiple regression: Introduction
Chapter 3: Multiple regression: More detail
Chapter 4: Three and more independent variables and related issues
Chapter 5: Three Types of multiple regression
Chapter 6: Analysis of categorical variables
Chapter 7: Regression with categorical and continuous variables
Chapter 8: Testing for interactions and curves with continuous variables
Chapter 9: Mediation, moderation, common cause, and suppression
Chapter 10: Multiple regression: Summary, assumptions, diagnostics, power, and problems
Chapter 11: Related methods: Quantile regression, logistic regression and multilevel modeling
Part II: Beyond Multiple Regression: Structural Equation Modeling
Chapter 12: Path modeling: Structural equation modeling with measured variables
Chapter 13: Path analysis: Assumptions and dangers
Chapter 14: Analyzing path models using SEM programs
Chapter 15: Error: The scourge of research
Chapter 16: Confirmatory factor analysis I
Chapter 17: Putting it all together: Introduction to latent variable SEM
Information Classification: General
Chapter 18: Latent variable models II: Single indicators, correlated errors, multigroup models, panel models, dangers & assumptions
Chapter 19: Latent means in SEM
Chapter 20: Confirmatory factor analysis II: Invariance and latent means
Chapter 21: Latent growth models
Chapter 22: Latent variable interactions and multilevel modeling in SEM
Chapter 23: Summary: Path analysis, CFA, SEM, mean structures, and latent growth models
Appendices
Appendix A: Data files and statistical program notes
Appendices B: Review of basic statistics concepts
Appendix C: Partial and semipartial correlation
Appendix D: Symbols used in this book
Appendix E: Useful formulae


Reference
Author index
Subject index

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책