logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Visual Object Tracking using Deep Learning

Visual Object Tracking using Deep Learning (Paperback, 1)

Ashish Kumar (지은이)
CRC Press
117,470원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
96,320원 -18% 0원
4,820원
91,500원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Visual Object Tracking using Deep Learning
eBook 미리보기

책 정보

· 제목 : Visual Object Tracking using Deep Learning (Paperback, 1) 
· 분류 : 외국도서 > 기술공학 > 기술공학 > 전력자원 > 전기 에너지
· ISBN : 9781032598079
· 쪽수 : 216쪽
· 출판일 : 2025-06-27

목차

Chapter 1
Introduction to visual tracking in video sequences

1.1 Overview of visual tracking in video sequences
1.2 Motivation and challenges
1.3 Real-time applications of visual tracking
1.4 Emergence from the conventional to deep learning approaches
1.5 Performance evaluation criteria
1.6 Summary

Chapter 2
Background and research orientation for visual tracking appearance model: Standards and Models

2.1 Background and preliminaries
2.2 Conventional tracking methods
2.3 Deep learning-based methods
2.4 Correlation filter based visual trackers
2.5 Summary

Chapter 3
Target feature extraction for robust appearance model

3.1. Saliency feature extraction for visual tracking
3.2 Handcrafted features
3.3 Deep learning for feature extraction
3.4 Multi-feature fusion for efficient tracking
3.5 Summary

Chapter 4
Performance metrics for visual tracking: A Qualitative and Quantitative analysis

4.1 Introduction
4.2 Performance metrics for tracker evaluation
4.3 Performance metrics without ground truth
4.4 Performance metrics with ground truth
4.5 Summary

Chapter 5
Visual tracking datasets: Benchmark for Evaluation

5.1 Introduction
5.2 Problem with the self-generated datasets
5.3 Salient features of visual tracking public datasets


Chapter 6

Conventional framework for visual tracking: Challenges and solutions

6.1 Introduction
6.2 Deterministic tracking approach
6.2.1 Meanshift and its variant-based trackers
6.2.2 Multi-modal deterministic approach
6.3 Generative tracking approach
6.4 Discriminative tracking approach
6.5 Summary

Chapter 7

Stochastic framework for visual tracking: Challenges and Solutions
7.1 Introduction
7.2 Particle filter for visual tracking
7.3 Framework and procedure
7.4 Fusion of multi-feature and State estimation
7.5 Experimental Validation of the particle filter based tracker
7.6 Discussion on PF-variants based tracking
7.7 Summary

Chapter 8
Multi-stage and collaborative framework for visual tracking
8.1 Introduction
8.2 Multi-stage tracking algorithms
8.3 Framework and procedures
8.4 Collaborative tracking algorithms
8.5 Summary


Chapter 9
Deep learning based visual tracking model: A paradigm shift
9.1 Introduction
9.2 Deep learning-based tracking framework
9.3 Hyper-feature based deep learning networks
9.4 Multi-modal based deep learning trackers
9.5 Summary

Chapter 10
Correlation filter-based visual tracking model: Emergence and upgradation
10.1 Introduction
10.2 Correlation filter-based tracking framework
10.3 Deep Correlation Filter based trackers
10.4 Fusion-based correlation filter trackers
10.5 Discussion on correlation filter-based trackers
10.6 Summary

Chapter 11
Future prospects of visual tracking: Application Specific Analysis

11.1 Introduction
11.2 Pruning for deep neural architecture
11.3 Explainable AI
11.4 Application-specific visual tracking
11.6 Summary

Chapter 12
Deep learning-based multi-object tracking: Advancement for intelligent video analysis
12.1 Introduction
12.2 Multi-object tracking algorithms
12.3 Evaluation metrics for performance analysis
12.4 Benchmark for performance evaluation
12.5 Application of MOT algorithms
12.6 Limitations of existing MOT algorithms
12.7 Summary

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책