logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Solid State Chemistry : An Introduction

Solid State Chemistry : An Introduction (Paperback, 6 ed)

Elaine A. Moore, Jennifer Readman (지은이)
CRC Press
115,730원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
94,890원 -18% 0원
4,750원
90,140원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Solid State Chemistry : An Introduction
eBook 미리보기

책 정보

· 제목 : Solid State Chemistry : An Introduction (Paperback, 6 ed) 
· 분류 : 외국도서 > 과학/수학/생태 > 과학 > 화학 > 분석화학
· ISBN : 9781032728872
· 쪽수 : 412쪽
· 출판일 : 2025-05-22

목차

Chapter 1 ? An Introduction to Crystal Structures

Jennifer E. Readman and Lesley E. Smart

1.1 Introduction

1.2 Close packing

1.3 Body-centred and Primitive Structures

1.4 Lattices and Unit Cells

1.4.1 Lattices

1.4.2 One- and Two- Dimensional Unit Cells

1.4.3 Three-Dimensional Lattices and Their Unit Cells

1.5 Crystalline solids

1.5.1 Unit cell stoichiometry and Fractional Coordinates

1.5.2 Ionic Solids with Formula MX

1.5.2.1 Caesium Chloride

1.5.2.2 Sodium Chloride

1.5.2.3 Zinc Blende & Wurtzite

1.5.2.4 Nickel Arsenide

1.5.3 Solids with General Formula MX2

1.5.3.1 Fluorite and Anti-Fluorite

1.5.3.2 Cadmium Chloride and Cadmium Iodide

1.5.3.3 Rutile

1.5.3.4 -Cristobalite

1.5.4 Other Important Crystal Structures

1.5.4.1 Rhenium trioxide

1.5.4.2 Perovskite

1.5.4.3 Spinel and Inverse Spinel

1.5.5 Miscellaneous Oxides

1.6 Ionic Radii and the Radius Ratio Rule

1.7 Extended Covalent Arrays

1.8 Molecular Structures

1.9 Lattice Energy

1.9.1 Born-Haber Cycle

1.9.2 Calculating Lattice Enthalpies

1.9.3 Calculations Using Thermodynamic Cycles and Lattice Energies

1.10 Symmetry

1.10.1 Symmetry Notation

1.10.2 Axes of Symmetry

1.10.3 Planes of Symmetry

1.10.4 Inversion

1.10.5 Inversion Axes, Improper Symmetry Axes, and the Identity Element

1.10.6 Operations

1.10.7 Symmetry in Crystals

1.10.8 Translational Symmetry Elements

1.10.9 Space groups

1.11 Miller Indices and Interplanar spacing

1.12 Quasicrystals

Summary.

Questions

Chapter 2 Scattering Techniques for Characterising Solids

Jennifer E. Readman

2.1 Introduction

2.2 X-ray Diffraction

2.2.1 The Generation of X-rays?????????

2.2.2 Scattering of X-rays & Bragg’s Law

2.2.3 The Diffraction Experiment

2.2.4 The Powder Diffraction Pattern

2.2.5 The Intensity of Diffracted Peaks

2.2.6 The Width of Diffracted Peaks

2.2.7 Rietveld Refinement

2.2.8 Structure & Single-Crystal Diffraction solution

2.3 Synchrotron Radiation

2.3.1 Introduction

2.3.2 Generation of Synchrotron X-rays

2.3.3 Bending Magnets and Insertion Devices

2.4 Neutron Diffraction

2.4.1 Background & Production of Neutrons

2.4.2 Neutron scattering

2.4.3 Experimental Neutron Diffraction

2.4.4 Magnetic Scattering

2.5 Pair Distribution Function Analysis (PDF)

2.5.1 Introduction

2.5.2 Theoretical background

2.5.3 The Total Scattering Experiment

2.6 In-situ Experiments

2.6.1 Variable Temperature

2.6.2 Variable Pressure

2.7 Free Electron Lasers (XFELs)

?2.7.1 Introduction

2.7.2 How XFEL X-rays Are Generated

2.7.3 Typical XFEL Experiments

Appendix Allowed reflections for simple cubic cells

Questions

?

Chapter 3 ? Non-Scattering Characterisation Techniques

Jennifer E. Readman

3.1 Introduction

3.2 Electron Microscopy

3.2.1 Scanning Electron Microscopy (SEM}

3.2.2 Transmission Electron Microscopy (TEM)

3.2.3 Electron Diffraction (ED)

3.2.4 Scanning Transmission Electron Microscopy (STEM)

3.2.5 Energy Dispersive X-Ray Analysis (EDS / EDX)

3.2.6 Electron Energy Loss Spectroscopy (EELS)

3.2.7 Scanning Tunnelling Microscopy (STM) & Atomic Force Microscopy (AFM)

3.3 X-ray Spectroscopy

3.3.1 Introduction

3.3.2 X-ray Fluorescence Spectroscopy (XRF)

3.3.3 X-ray Absorption Spectroscopy

3.3.4 EXAFS

3.3.5 XANES

3.3.6 Experimental XAS

3.3.7 X-ray Photoelectron Spectroscopy (XPS)

3.4 Solid State NMR

3.4.1 Introduction

3.4.2 29-Si MAS NMR

3.4.3 Quadrupolar nuclei

3.5 Surface Area Measurements

3.5.1 Gas Adsorption Isotherms

3.5.2 Classification of Isotherms

3.6 Thermal Analysis

3.6.1 Thermogravimetric analysis (TGA)

3.6.2 Differential Thermal Analysis (DTA)

3.6.3 Differential Scanning Calorimetry (DSC)

3.6.4 Temperature Programmed Reduction (TPR) & Temperature Programmed Desorption (TPD)

Summary for chapters 2 and 3,

Questions

Chapter 4 Synthesis

?Elaine A. Moore and Lesley E. Smart

4.1?????? Introduction

4.2?????? High-Temperature Ceramic Methods

4.2.1??? Direct Heating of Solids

4.2.2??? Precursor Methods

4.2.3??? Sol?Gel Methods

4.3.????? High-Pressure Methods

4.3.1.?? Using High-Pressure Gases

4.3.2.?? Using Hydrostatic Pressures

4.4.????? Chemical Vapour Deposition

4.4.1.?? Preparation of Semiconductors

4.4.2.?? Diamond Films

4.4.3??? Optical Fibres

4.5.????? Preparing Single Crystals

4.5.1??? Epitaxy Methods

4.5.2??? Chemical Vapour Transport

4.5.3.?? Melt Methods

4.5.4??? Solution Methods

4.6.????? Intercalation

4.7.????? Green Chemistry

4.7.1.?? Mechanochemical Synthesis

4.7.2.?? Microwave Synthesis

4.7.3.?? Hydrothermal Methods

4.7.4.?? Ultrasound-assisted synthesis

4.7.5 Biological-related methods

4.7. 6. Barium Titanate

4.8.????? Choosing a Method

?

?

Chapter 5 Solids:Bonding and Electronic Properties

Elaine A. Moore and Neil Allan

5.2. Bonding in Solids: Free electron theory

5.2.1. Electronic conductivity

5.1 Introduction

5.3. Bonding in Solids: Molecular Orbital Theory

5.3.1. Simple Metals

5.3.2. Group 14 elements

5.4. Semiconductors

5.4.1. Photoconductivity

5.4.2. Doped Semiconductors

5.5. p-n junction and field effect transistors

5.5.1. Flash Memory

5.6. Bands in compounds: Gallium Arsenide

5.7. Bands in d-block compounds: transition metal monoxides

5.8. Superconductivity

5.8.1. BCS Theory of superconductivity

5.8.2. High temperature superconductors: cuprates

5.8.3. Iron superconductors

5.9. Summary

Questions

Chapter 6 Defects and Non-stoichiometry

Elaine A. Moore and Lesley E. Smart

6.1. Introduction

6.2?????? Point Defects and Their Concentration

6.2.1??? Intrinsic Defects

6.2.2??? Concentration of Defects

6.2.3??? Extrinsic Defects

6.2.4??? Defect Nomenclature

6.3?????? Nonstoichiometric Compounds

6.3.1??? Nonstoichiometry in Wustite (FeO) and MO-Type Oxides

6.3.2??? Uranium Dioxide

6.3.3??? Titanium Monoxide Structure

6.4?????? Extended Defects

6.4.1??? Crystallographic shear

6.4.2??? Planar Intergrowths

6.4.3??? Block Structures

6.4.4??? Pentagonal Columns

6.4.5??? Infinitely Adaptive Structures

6.5?????? Properties of Nonstoichiometric Oxides

6.5.1. Transition metal monoxides

6.6?????? Summary

Questions

?

Chapter 7 Batteries and Fuel Cells

Elaine A. Moore and Lesley E. Smart

7.1. Introduction

7.2. Ionic conductivity in solids

7.3. Solid electrolytes

7.3.1 Silver-ion conductors

7.3.2. Lithium-ion conductors

7.3.3. Sodium-ion conductors

7.3.4. Oxide-ion conductors

7.4. Lithium-based batteries

7.5. Sodium-based batteries

7.6. Fuel cells

7.6.1. Solid oxide fuel cells

7.6.2. Proton Exchange Membrane cells

7.7. Summary

Questions

Chapter 8 Microporous and Mesoporous solids

?

Jennifer E. Readman (and Lesley E. Smart ?)

8.1. Introduction

8.2 Silicates

8.3. Zeolites

8.3.1. Background

8.3.2. Composition and Structure of Zeolites.

8.3.3. Zeolite Nomenclature

8.3.4. Si/Al ratios in Zeolites

8.3.5. Exchangeable Cations

8.3.6 Synthesis of Zeolites

8.3.7. Uses of Zeolites

8.4. Zeotypes

8.4.1. Aluminophosphates

8.4.2. Mixed Coordination Metallosilicates

8.5. Metal-Organic Frameworks (MOFs)

8.5.1. Composition and Structure of MOFs

8.5.2. Example MOF Structures

8.5.3.? Breathing MOFs

8.5.4. Synthesis of MOFs

8.5.5. Applications of MOFs

8.6. Zeolite-like MOFs

8.7. Covalent Organic Frameworks

8.8. Mesoporous Silicas

8.9. Clays

Summary

Questions

?

?

?

Chapter Optical 9 and Thermal Properties of Solids

Elaine A. Moore

9.1 Introduction

9.2. Interaction of Light with atoms

9.2.1. Ruby Laser

9.2.2. Phosphors for LEDs

9.3. Colour Centres

9.4. Absorption and Emission of Radiation in Continuous Solids

9.4.1. Gallium Arsenide Laser

9.4.2. Quantum Wells: Blue laser

9.4.3. Light emitting diodes (LEDs)

9.4.4. Photovoltaic (Solar) Cells

9.5. Carbon-based conducting polymers

9.5.1. Polyacetylene

9.5.2. Bonding in Polyacetylene and related polymers

9.5.3 Organic LEDs (QLEDs)

9.6. Refraction

9.6.1. Calcite

9.6.2. Optical Fibres

9.7. Photonic crystals

9.8. Thermal properties of Materials

9.8.1 Heat Capacity

9.8.2. Thermal Energy Storage

9.8.3. Thermal Expansion

9.8.4. Thermal conductivity

9.8.5 Thermal devices

9.9 Summary

Questions

Chapter 10 Magnetic and Electrical Properties

Elaine A. Moore

10.1. Introduction

10.2. Magnetic Susceptibility

10.3. Paramagnetism in metal complexes

10.4. Ferromagnetic Metals

10.4.1. Magnetic Domains

10.4.2 Permanent magnets

10.4.3 Magnetic Shielding

10.5. Ferromagnetic compounds: chromium dioxide

10.6. Antiferromagnetism: transition metal monoxides

10.7. Ferrimagnetism: ferrites

10.7.1. Magnetic strips on swipe cards

10.8. Spiral Magnetism

10.9 Giant, Tunneling and colossal magnetoresistance

10.9.1 Giant Magnetoresistance

10.9.2. Tunneling Magnetoresistance

10.9.3 Car steering angle sensors

10.9.4 Colossal Magnetoresistance: manganites

10.10 Magnetic properties of superconductors

10.11 Electrical Polarisation

10.12. Piezoelectric crystals A-Quartz

10.13 Ferroelectric effect

10.13.1. Capacitors

10.14. Multiferroics

10.14.1. Type 1 multiferroics:bismuth ferrite

10.14.2. Type 2 multiferroics: terbium manganite

10.15. Summary

Questions

Chapter 11 Nanostructures

Elaine A. Moore and Lesley E. Smart

11.1. Introduction

11.2. Consequences of the nanoscale

11.2.1. Nanoparticle morphology

11.2.2. Mechanical Properties

11.2.3 Melting temperature

11.2.4. Electronic properties

11.2.5. Optical Properties

11.2.6 Magnetic Properties

11.3. Nanostructural Carbon

11.3.1. Carbon Black

11.3.2. Graphene

11.3.3. Graphene Oxide

11.3.4. Buckminsterfullerene

11.3.5. Carbon nanotubes

11.4. Noncarbon nanostructures

11.4.1 Fumed Silica

11.4.2. Metal nanoparticles

11.4.3. Non-carbon -ene structures

11.4.4. Other non-carbon nanostructures

11.5. Synthesis of nanostructures

11.5.1 Top-down methods

11.5.2. Bottom-up methods

11.5.3 Synthesis using templates

11.6. Nanostructures in health

11.7. Safety

11.8 Summary

Questions

Chapter 12 Sustainability

Mary Anne White

12.1. Introduction

12.1.1 Definition of Materials Sustainability

12.1.2 Sustainable Materials Chemistry Goals

12.1.3 Materials Dependence in Society

12.1.4 Elemental Abundances

12.1.5 Solid State Chemistry’s Role in Sustainability

12.1.6 Material Life Cycle

12.2 Tools for Sustainable Approaches

?

12.2.1 Green Chemistry

12.2.2 Herfindahl-Hirschman Index (HHI)

12.2.3 Embodied Energy

12.2.4 Exergy

12.2.5 Life Cycle Assessment

12.3 Case Study: Sustainability of a Smartphone

12.4 Theoretical Approaches

12.5 Summary

Questions

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책