logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Modern Machine Learning Techniques and Their Applications in Cartoon Animation Research

Modern Machine Learning Techniques and Their Applications in Cartoon Animation Research (Hardcover)

Dacheng Tao, Jun Yu (지은이)
John Wiley & Sons Inc
191,380원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
156,930원 -18% 0원
7,850원
149,080원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Modern Machine Learning Techniques and Their Applications in Cartoon Animation Research
eBook 미리보기

책 정보

· 제목 : Modern Machine Learning Techniques and Their Applications in Cartoon Animation Research (Hardcover) 
· 분류 : 외국도서 > 컴퓨터 > 컴퓨터 엔지니어링
· ISBN : 9781118115145
· 쪽수 : 208쪽
· 출판일 : 2013-03-18

목차

Preface xi

1 Introduction 1

1.1 Perception 2

1.2 Overview of Machine Learning Techniques 2

1.2.1 Manifold Learning 3

1.2.2 Semi-supervised Learning 5

1.2.3 Multiview Learning 8

1.2.4 Learning-based Optimization 9

1.3 Recent Developments in Computer Animation 11

1.3.1 Example-Based Motion Reuse 11

1.3.2 Physically Based Computer Animation 26

1.3.3 Computer-Assisted Cartoon Animation 33

1.3.4 Crowd Animation 42

1.3.5 Facial Animation 51

1.4 Chapter Summary 60

2 Modern Machine Learning Techniques 63

2.1 A Unified Framework for Manifold Learning 65

2.1.1 Framework Introduction 65

2.1.2 Various Manifold Learning Algorithm Unifying 67

2.1.3 Discriminative Locality Alignment 69

2.1.4 Discussions 71

2.2 Spectral Clustering and Graph Cut 71

2.2.1 Spectral Clustering 72

2.2.2 Graph Cut Approximation 76

2.3 Ensemble Manifold Learning 81

2.3.1 Motivation for EMR 81

2.3.2 Overview of EMR 81

2.3.3 Applications of EMR 84

2.4 Multiple Kernel Learning 86

2.4.1 A Unified Mulitple Kernel Learning Framework 87

2.4.2 SVM with Multiple Unweighted-Sum Kernels 89

2.4.3 QCQP Multiple Kernel Learning 89

2.5 Multiview Subspace Learning 90

2.5.1 Approach Overview 90

2.5.2 Techinique Details 90

2.5.3 Alternative Optimization Used in PA-MSL 93

2.6 Multiview Distance Metric Learning 94

2.6.1 Motivation for MDML 94

2.6.2 Graph-Based Semi-supervised Learning 95

2.6.3 Overview of MDML 95

2.7 Multi-task Learning 98

2.7.1 Introduction of Structural Learning 99

2.7.2 Hypothesis Space Selection 100

2.7.3 Algorithm for Multi-task Learning 101

2.7.4 Solution by Alternative Optimization 102

2.8 Chapter Summary 103

3 Animation Research: A Brief Introduction 105

3.1 Traditional Animation Production 107

3.1.1 History of Traditional Animation Production 107

3.1.2 Procedures of Animation Production 108

3.1.3 Relationship Between Traditional Animation and Computer Animation 109

3.2 Computer-Assisted Systems 110

3.2.1 Computer Animation Techniques 111

3.3 Cartoon Reuse Systems for Animation Synthesis 117

3.3.1 Cartoon Texture for Animation Synthesis 118

3.3.2 Cartoon Motion Reuse 120

3.3.3 Motion Capture Data Reuse in Cartoon Characters 122

3.4 Graphical Materials Reuse: More Examples 124

3.4.1 Video Clips Reuse 124

3.4.2 Motion Captured Data Reuse by Motion Texture 126

3.4.3 Motion Capture Data Reuse by Motion Graph 127

3.5 Chapter Summary 129

4 Animation Research: Modern Techniques 131

4.1 Automatic Cartoon Generation with Correspondence Construction 131

4.1.1 Related Work in Correspondence Construction 132

4.1.2 Introduction of the Semi-supervised Correspondence Construction 133

4.1.3 Stroke Correspondence Construction via Stroke Reconstruction Algorithm 138

4.1.4 Simulation Results 141

4.2 Cartoon Characters Represented by Multiple Features 146

4.2.1 Cartoon Character Extraction 147

4.2.2 Color Histogram 148

4.2.3 Hausdorff Edge Feature 148

4.2.4 Motion Feature 150

4.2.5 Skeleton Feature 151

4.2.6 Complementary Characteristics of Multiview Features 153

4.3 Graph-based Cartoon Clips Synthesis 154

4.3.1 Graph Model Construction 155

4.3.2 Distance Calculation 155

4.3.3 Simulation Results 156

4.4 Retrieval-based Cartoon Clips Synthesis 161

4.4.1 Constrained Spreading Activation Network 162

4.4.2 Semi-supervised Multiview Subspace Learning 165

4.4.3 Simulation Results 168

4.5 Chapter Summary 173

References 174

Index 195

저자소개

Jun Yu (지은이)    정보 더보기
펼치기
이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책