logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

[eBook Code] Municipal Solid Waste to Energy Conversion Processes

[eBook Code] Municipal Solid Waste to Energy Conversion Processes (eBook Code, 1st)

(Economic, Technical, and Renewable Comparisons)

Gary C. Young (지은이)
  |  
Wiley
2011-05-23
  |  
162,290원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
알라딘 129,830원 -20% 0원 0원 129,830원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
로딩중

e-Book

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

해외직구

책 이미지

[eBook Code] Municipal Solid Waste to Energy Conversion Processes

책 정보

· 제목 : [eBook Code] Municipal Solid Waste to Energy Conversion Processes (eBook Code, 1st) (Economic, Technical, and Renewable Comparisons)
· 분류 : 외국도서 > 과학/수학/생태 > 과학 > 화학 > 화학 일반
· ISBN : 9781118125908
· 쪽수 : 396쪽

목차

Preface.

Professional Biography.

1 Introduction to Gasification / Pyrolysis and Combustion Technology(s).

Historical Background and Perspective.

Introduction.

What is Pyrolysis?

What is Pyrolysis/Gasification?

What is Conventional Gasification?

What is Plasma Arc Gasification?

What is Mass Burn (Incineration)?

Which Thermal Process Technology is the Most Efficient and Economical?

Performance/Thermal Efficiency of Technologies.

What is the Economic Comparison Between the Thermal Processes?

References.

2 How Can Plasma Arc Gasification Take Garbage to Electricity and a Case Study?

Basis.

Economic Cases.

Logical Approach for Future Progress.

References.

3 How Can Plasma Arc Gasification Take Garbage to Liquid Fuels and Case Studies?

MSW To Syngas to Liquid Fuels Via Chemistry (Fischer–Tropsch Synthesis) and a Case Study.

Basis.

Economic Case.

Logical Approach for Future Progress.

MSW to Syngas to Liquid Fuel via Biochemistry and a Case Study.

Basis and Economics.

References.

4 Plasma Economics: Garbage/Wastes to Electricity, Case Study with Economy of Scale.

Conclusions and Recommendations (Opinions).

References.

5 Plasma Economics: Garbage/Wastes to Power Ethanol Plants and a Case Study.

Basis.

Economic Cases.

Logical Approach for Future Progress.

References.

6 From Curbside to Landfill: Cash Flows as a Revenue Source for Waste Solids-to-Energy Management.

References.

7 Plasma Economics: Garbage/Wastes to Power, Case Study with Economics of a 94 ton/day Facility.

More Recent Events About the Project.

References.

8 Plant Operations: Eco-Valley Plant in Utashinai, Japan: An Independent Case Study.

References.

9 Municipal Solid Waste and Properties.

What is Municipal Solid Waste (MSW) and How Much is Generated in the United States?

MSW Properties.

References.

10 MSW Processes to Energy with High-Value Products and Specialty By-Products.

Production of Ammonia (NH3) from Syngas via Chemical Synthesis Route.

Production of Gas to Liquids from Syngas via Chemical Synthesis Route.

Production of Methanol (CH3OH) from Syngas via Chemical Synthesis Route.

Production of Synthetic Natural Gas (SNG) from Syngas via Chemical Synthesis Route.

Production of Hydrogen (H2) from Syngas via Chemical Synthesis Route(s).

Gasifier.

Air Separation Unit (ASU).

Hot Gas Cleanup System.

Sulfuric Acid Plant.

CO2-Rich Separated Gas Stream/Conventional Turbine Expander.

Production of Ethanol (CH3CH2OH) from Syngas via Chemical Synthesis Route.

Production of Ethanol and Methanol from Syngas using Fischer–Tropsch Synthesis Process.

Production of Ethanol from Syngas via a Bio-Chemical Synthesis Route.

Production of Ethanol via a Combination of Chemical and Bio-Chemical Synthesis Routes Using Biomass (Cellulosic Material).

Oxosynthesis (Hydroformylation): Syngas and Olefinic Hydrocarbons and Chemical Synthesis.

Slag or Vitrified Slag or Ash from Gasification Reactor and Specialty By-Product Options.

Vitrified Slag, Slag, and Ashes: Research and Development (R&D), Marketing, and Sales.

Process for Resolving Problems with Ashes.

Production of Road Material from Slag and Vitrified Slag.

Production and Uses of Rock Wool, Stone Wool, and Mineral Wool.

Production of Aggregate.

Production of Flame-Resistant Foam.

Destruction of Asbestos Wastes via Vitrification.

Discussion of Potential Markets for the Vitrified Slag.

References.

11 MSW Gasifiers and Process Equipment.

Conventional Gasifiers/Gasification Reactors.

ChevronTexaco Entrained-Flow Gasifier.

E-GasTM Entrained-Flow Gasifier.

Shell Entrained-Flow Gasifier.

Lurgi Dry-Ash Gasifier and British Gas/Lurgi Gasifier.

Prenflo Entrained Bed Gasifier.

Noell Entrained Flow Gasifier.

High-Temperature Winkler Gasifier.

KRW Fluidized Bed Gasifier.

Plasma Arc Gasification Technology.

Alter Nrg Plasma Gasifier (Westinghouse Plasma Corporation) System.

EUROPLASMA, Plasma Arc System.

Phoenix Solutions Plasma Arc Torches, Phoenix Solutions Company (PSC).

PyroGenesis Plasma-Based Waste to Energy.

Integrated Environmental Technologies, LLC (InEnTec).

Other Gasification Technology.

Thermoselect Process by Interstate Waste Technologies.

Primenergy's Gasification System at Moderate Temperatures.

Nexterra's Gasification System at Moderate Temperatures.

Other Process Equipments.

Candle Filter.

Pressure Swing Adsorption (PSA) Units.

Mercury Removal Systems.

Main Sulfur Removal Technologies.

Combustion Turbine for Syngas and Gas Engine for Syngas.

Siemens-Westinghouse Syngas Combustion Turbine for Syngas.

General Electric (GE) Combustion Turbine for Syngas.

GE Gas Engine for Syngas.

Noncontact Solids Flow Meter for Waste Solids (RayMas® Meter).

References.

12 Other Renewable Energy Sources.

Wind Energy: Introduction.

Big Wind Systems to Energy.

Economic Example and Cases.

Discussion of Economics For the Large Wind Farm Cases.

Economy of Scale Associated With Wind Farms.

Small Wind Systems to Energy.

Discussion of Economics for the Small Wind Farm Cases.

Hydroelectric Energy: Introduction.

Hydroelectric Mill Dam: Nashua, Iowa.

Discussion of the Nashua Hydroelectric Economic Analyses.

Hydroelectric Mill Dam: Delhi, Iowa.

Discussion of the Delhi Hydroelectric Economic Analyses.

Hydroelectric Mill Dam: Fort Dodge, Iowa.

Discussion of the Fort Dodge Hydroelectric Economic Analyses.

Daily Flow and Production Methodology, Fort Dodge Mill Dam Hydroelectric Facility.

References.

13 Waste Energy to Recycled Energy.

Introduction.

References.

Index.

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책