logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

[eBook Code] Reinforcement and Systemic Machine Learning for Decision Making

[eBook Code] Reinforcement and Systemic Machine Learning for Decision Making (eBook Code, 1st)

Parag Kulkarni (지은이)
Wiley-IEEE Press
210,130원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
168,100원 -20% 0원
0원
168,100원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

[eBook Code] Reinforcement and Systemic Machine Learning for Decision Making
eBook 미리보기

책 정보

· 제목 : [eBook Code] Reinforcement and Systemic Machine Learning for Decision Making (eBook Code, 1st) 
· 분류 : 외국도서 > 기술공학 > 기술공학 > 전자공학 > 일반
· ISBN : 9781118271537
· 쪽수 : 312쪽
· 출판일 : 2012-07-16

목차

Preface xv

Acknowledgments xix

About the Author xxi

1 Introduction to Reinforcement and Systemic Machine Learning 1

1.1. Introduction 1

1.2. Supervised, Unsupervised, and Semisupervised Machine Learning 2

1.3. Traditional Learning Methods and History of Machine Learning 4

1.4. What Is Machine Learning? 7

1.5. Machine-Learning Problem 8

1.6. Learning Paradigms 9

1.7. Machine-Learning Techniques and Paradigms 12

1.8. What Is Reinforcement Learning? 14

1.9. Reinforcement Function and Environment Function 16

1.10. Need of Reinforcement Learning 17

1.11. Reinforcement Learning and Machine Intelligence 17

1.12. What Is Systemic Learning? 18

1.13. What Is Systemic Machine Learning? 18

1.14. Challenges in Systemic Machine Learning 19

1.15. Reinforcement Machine Learning and Systemic Machine Learning 19

1.16. Case Study Problem Detection in a Vehicle 20

1.17. Summary 20

2 Fundamentals of Whole-System, Systemic, and Multiperspective Machine Learning 23

2.1. Introduction 23

2.2. What Is Systemic Machine Learning? 27

2.3. Generalized Systemic Machine-Learning Framework 30

2.4. Multiperspective Decision Making and Multiperspective Learning 33

2.5. Dynamic and Interactive Decision Making 43

2.6. The Systemic Learning Framework 47

2.7. System Analysis 52

2.8. Case Study: Need of Systemic Learning in the Hospitality Industry 54

2.9. Summary 55

3 Reinforcement Learning 57

3.1. Introduction 57

3.2. Learning Agents 60

3.3. Returns and Reward Calculations 62

3.4. Reinforcement Learning and Adaptive Control 63

3.5. Dynamic Systems 66

3.6. Reinforcement Learning and Control 68

3.7. Markov Property and Markov Decision Process 68

3.8. Value Functions 69

3.8.1. Action and Value 70

3.9. Learning an Optimal Policy (Model-Based and Model-Free Methods) 70

3.10. Dynamic Programming 71

3.11. Adaptive Dynamic Programming 71

3.12. Example: Reinforcement Learning for Boxing Trainer 75

3.13. Summary 75

4 Systemic Machine Learning and Model 77

4.1. Introduction 77

4.2. A Framework for Systemic Learning 78

4.3. Capturing the Systemic View 86

4.4. Mathematical Representation of System Interactions 89

4.5. Impact Function 91

4.6. Decision-Impact Analysis 91

4.7. Summary 97

5 Inference and Information Integration 99

5.1. Introduction 99

5.2. Inference Mechanisms and Need 101

5.3. Integration of Context and Inference 107

5.4. Statistical Inference and Induction 111

5.5. Pure Likelihood Approach 112

5.6. Bayesian Paradigm and Inference 113

5.7. Time-Based Inference 114

5.8. Inference to Build a System View 114

5.9. Summary 118

6 Adaptive Learning 119

6.1. Introduction 119

6.2. Adaptive Learning and Adaptive Systems 119

6.3. What Is Adaptive Machine Learning? 123

6.4. Adaptation and Learning Method Selection Based on Scenario 124

6.5. Systemic Learning and Adaptive Learning 127

6.6. Competitive Learning and Adaptive Learning 140

6.7. Examples 146

6.8. Summary 149

7 Multiperspective and Whole-System Learning 151

7.1. Introduction 151

7.2. Multiperspective Context Building 152

7.3. Multiperspective Decision Making and Multiperspective Learning 154

7.4. Whole-System Learning and Multiperspective Approaches 164

7.5. Case Study Based on Multiperspective Approach 167

7.6. Limitations to a Multiperspective Approach 174

7.7. Summary 174

8 Incremental Learning and Knowledge Representation 177

8.1. Introduction 177

8.2. Why Incremental Learning? 178

8.3. Learning from What Is Already Learned. . . 180

8.4. Supervised Incremental Learning 191

8.5. Incremental Unsupervised Learning and Incremental Clustering 191

8.6. Semisupervised Incremental Learning 196

8.7. Incremental and Systemic Learning 199

8.8. Incremental Closeness Value and Learning Method 200

8.9. Learning and Decision-Making Model 205

8.10. Incremental Classification Techniques 206

8.11. Case Study: Incremental Document Classification 207

8.12. Summary 208

9 Knowledge Augmentation: A Machine Learning Perspective 209

9.1. Introduction 209

9.2. Brief History and Related Work 211

9.3. Knowledge Augmentation and Knowledge Elicitation 215

9.4. Life Cycle of Knowledge 217

9.5. Incremental Knowledge Representation 222

9.6. Case-Based Learning and Learning with Reference to Knowledge Loss 224

9.7. Knowledge Augmentation: Techniques and Methods 224

9.8. Heuristic Learning 228

9.9. Systemic Machine Learning and Knowledge Augmentation 229

9.10. Knowledge Augmentation in Complex Learning Scenarios 232

9.11. Case Studies 232

9.12. Summary 235

10 Building a Learning System 237

10.1. Introduction 237

10.2. Systemic Learning System 237

10.3. Algorithm Selection 242

10.4. Knowledge Representation 244

10.5. Designing a Learning System 245

10.6. Making System to Behave Intelligently 246

10.7. Example-Based Learning 246

10.8. Holistic Knowledge Framework and Use of Reinforcement Learning 246

10.9. Intelligent Agents—Deployment and Knowledge Acquisition and Reuse 250

10.10. Case-Based Learning: Human Emotion-Detection System 251

10.11. Holistic View in Complex Decision Problem 253

10.12. Knowledge Representation and Data Discovery 255

10.13. Components 258

10.14. Future of Learning Systems and Intelligent Systems 259

10.15. Summary 259

Appendix A: Statistical Learning Methods 261

Appendix B: Markov Processes 271

Index 281

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책