logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

[eBook Code] Experimental Micro/Nanoscale Thermal Transport

[eBook Code] Experimental Micro/Nanoscale Thermal Transport (eBook Code, 1st)

Xinwei Wang (지은이)
Wiley
210,080원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
168,060원 -20% 0원
0원
168,060원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

[eBook Code] Experimental Micro/Nanoscale Thermal Transport
eBook 미리보기

책 정보

· 제목 : [eBook Code] Experimental Micro/Nanoscale Thermal Transport (eBook Code, 1st) 
· 분류 : 외국도서 > 기술공학 > 기술공학 > 나노테크놀리지/MEMS
· ISBN : 9781118310199
· 쪽수 : 280쪽
· 출판일 : 2012-05-08

목차

Preface xi

1 Introduction 1

1.1 Unique Feature of Thermal Transport in Nanoscale and Nanostructured Materials 1

1.1.1 Thermal Transport Constrained by Material Size 2

1.1.2 Thermal Transport Constrained by Time 6

1.1.3 Thermal Transport Constrained by the Size of Physical Process 8

1.2 Molecular Dynamics Simulation of Thermal Transport at Micro/Nanoscales 10

1.2.1 Equilibrium MD Prediction of Thermal Conductivity 11

1.2.2 Nonequilibrium MD Study of Thermal Transport 15

1.2.3 MD Study of Thermal Transport Constrained by Time 18

1.3 Boltzmann Transportation Equation for Thermal Transport Study 21

1.4 Direct Energy Carrier Relaxation Tracking (DECRT) 32

1.5 Challenges in Characterizing Thermal Transport at Micro/Nanoscales 44

References 45

2 Thermal Characterization in Frequency Domain 47

2.1 Frequency Domain Photoacoustic (PA) Technique 47

2.1.1 Physical Model 48

2.1.2 Experimental Details 50

2.1.3 PA Measurement of Films and Bulk Materials 52

2.1.4 Uncertainty of the PA Measurement 55

2.2 Frequency Domain Photothermal Radiation (PTR) Technique 57

2.2.1 Experimental Details of the PTR Technique 57

2.2.2 PTR Measurement of Micrometer-Thick Films 58

2.2.3 PTR with Internal Heating of Desired Locations 60

2.3 Three-Omega Technique 62

2.3.1 Physical Model of the 3ω Technique for One-Dimensional Structures 62

2.3.2 Experimental Details 65

2.3.3 Calibration of the Experiment 67

2.3.4 Measurement of Micrometer-Thick Wires 69

2.3.5 Effect of Radiation on Measurement Result 70

2.4 Optical Heating Electrical Thermal Sensing (OHETS) Technique 73

2.4.1 Experimental Principle and Physical Model 73

2.4.2 Effect of Nonuniform Distribution of Laser Beam 74

2.4.3 Experimental Details and Calibration 77

2.4.4 Measurement of Electrically Conductive Wires 79

2.4.5 Measurement of Nonconductive Wires 81

2.4.6 Effect of Au Coating on Measurement 83

2.4.7 Temperature Rise in the OHETS Experiment 84

2.5 Comparison Among the Techniques 85

References 86

3 Transient Technologies in the Time Domain 87

3.1 Transient Photo-Electro-Thermal (TPET) Technique 87

3.1.1 Experimental Principles 88

3.1.2 Physical Model Development 88

3.1.3 Effect of Nonuniform Distribution and Finite Rising Time of the Laser Beam 90

3.1.4 Experimental Setup 92

3.1.5 Technique Validation 93

3.1.6 Thermal Characterization of SWCNT Bundles and Cloth Fibers 95

3.2 Transient Electrothermal (TET) Technique 98

3.2.1 Physical Principles of the TET Technique 98

3.2.2 Methods for Data Analysis to Determine the Thermal Diffusivity 100

3.2.3 Effect of Nonconstant Electrical Heating 101

3.2.4 Experimental Details 102

3.2.5 Technique Validation 104

3.2.6 Measurement of SWCNT Bundles 105

3.2.7 Measurement of Polyester Fibers 107

3.2.8 Measurement of Micro/Submicroscale Polyacrylonitrile Wires 109

3.3 Pulsed Laser-Assisted Thermal Relaxation Technique 113

3.3.1 Experimental Principles 113

3.3.2 Physical Model for the PLTR Technique 114

3.3.3 Methods to Determine the Thermal Diffusivity 116

3.3.4 Experimental Setup and Technique Validation 117

3.3.5 Measurement of Multiwalled Carbon Nanotube (MWCNT) Bundles 118

3.3.6 Measurement of Individual Microscale Carbon Fibers 122

3.4 Super Channeling Effect for Thermal Transport in Micro/Nanoscale Wires 123

3.5 Multidimensional Thermal Characterization 128

3.5.1 Sample Preparation 129

3.5.2 Thermal Characterization Design 130

3.5.3 Thermal Transport Along the Axial Direction of Amorphous TiO2 Nanotubes 131

3.5.4 Thermal Transport in the Cross-Tube Direction of Amorphous TiO2 Nanotubes 133

3.5.5 Evaluation of Thermal Contact Resistance Between Amorphous TiO2 Nanotubes 136

3.5.6 Anisotropic Thermal Transport in Anatase TiO2 Nanotubes 137

3.6 Remarks on the Transient Technologies 139

References 139

4 Steady-State Thermal Characterization 141

4.1 Generalized Electrothermal Characterization 142

4.1.1 Generalized Electrothermal (GET) Technique: Combined Transient and Steady States 142

4.1.2 Experimental Setup 144

4.1.3 Experimental Details 145

4.1.4 Measurement of MWCNT Bundle with L = 3.33 mm and D = 94.5 μm 147

4.1.5 Measurement of MWCNT Bundle with L = 2.90 mm and D = 233 μm 153

4.1.6 Analysis of the Tube-to-Tube Thermal Contact Resistance 157

4.1.7 Effect of Radiation Heat Loss 158

4.2 Get Measurement of Porous Freestanding Thin Films Composed of Anatase TiO2 Nanofibers 159

4.2.1 Sample Preparation 160

4.2.2 RT Calibration 162

4.2.3 TET Measurement of Thermal Conductivity and Thermal Diffusivity 163

4.2.4 Thermophysical Properties of Samples with Different Dimensions 167

4.2.5 The Intrinsic Thermal Conductivity of TiO2 Nanofibers 170

4.2.6 Uncertainty Analysis 172

4.3 Measurement of Micrometer-Thick Polymer Films 173

4.3.1 Sample Preparation 173

4.3.2 Electrical Resistance (R)-Temperature Coefficient Calibration 175

4.3.3 Measurement of Thermal Conductivity and Thermal Diffusivity 175

4.3.4 Thermophysical Properties of P3HT Thin Films with Different Dimensions 178

4.4 Steady-State Electro-Raman Thermal (SERT) Technique 182

4.4.1 Experimental Principle and Physical Model Development 183

4.4.2 Experimental Setup for Measuring CNT Buckypaper 187

4.4.3 Calibration Experiment 188

4.4.4 Thermal Characterization of MWCNT Buckypapers 190

4.4.5 Thermal Conductivity Analysis 192

4.4.6 Uncertainty Induced by Location of Laser Focal Point 195

4.4.7 Effect of Thermal and Electrical Contact Resistances and Thermal Transport in Electrodes 196

4.5 SERT Measurement of MWCNT Bundles 197

4.6 Extension of the Steady-State Techniques 202

References 202

5 Steady-State Optical-Based Thermal Probing and Characterization 205

5.1 Sub-10-nm Temperature Measurement 205

5.1.1 Introduction to Sub-10-nm Near-Field Focusing 206

5.1.2 Experimental Design and Conduction 208

5.1.3 Measurement Results 210

5.1.4 Physics Behind Near-Field Focusing and Thermal Transport 213

5.2 Thermal Probing at nm/SUB-nm Resolution for Studying Interface Thermal Transport 219

5.2.1 Introduction 219

5.2.2 Experimental Method 220

5.2.3 Experimental Results 221

5.2.4 Comparison with Molecular Dynamics Simulation 225

5.2.5 Discussion 226

5.3 Optical Heating and Thermal Sensing using Raman Spectrometer 234

5.3.1 Thermal Conductivity Measurement of Suspended Filmlike Materials 234

5.3.2 Thermal Conductivity Measurement of Suspended Nanowires 236

5.4 Bilayer Sensor-Based Technique 237

5.5 Further Consideration for Micro/Nanoscale Thermal Sensing and Characterization 238

5.5.1 Electrothermal Sensing in Thermal Characterization of Coatings/Films 239

5.5.2 Transient Photo-Heating and Thermal Sensing of Wirelike Samples 240

References 242

Index 247

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책