logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Probabilistic Reliability Models

Probabilistic Reliability Models (Hardcover)

Igor Ushakov (지은이)
John Wiley & Sons Inc
216,350원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
162,260원 -25% 0원
4,870원
157,390원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Probabilistic Reliability Models
eBook 미리보기

책 정보

· 제목 : Probabilistic Reliability Models (Hardcover) 
· 분류 : 외국도서 > 의학 > 생물통계학
· ISBN : 9781118341834
· 쪽수 : 248쪽
· 출판일 : 2012-10-09

목차

Preface xiii

Acronyms and Notations xv

1 What Is Reliability? 1

1.1 Reliability as a Property of Technical Objects, 1

1.2 Other “Ilities”, 2

1.3 Hierarchical Levels of Analyzed Objects, 5

1.4 How Can Reliability Be Measured?, 5

1.5 Software Reliability, 7

1.5.1 Case Study: Avalanche of Software Failures, 8

2 Unrecoverable Objects 9

2.1 Unit, 9

2.1.1 Probability of Failure-Free Operation, 9

2.1.2 Mean Time to Failure, 10

2.2 Series Systems, 11

2.2.1 Probability of Failure-Free Operation, 11

2.2.2 Mean Time to Failure, 13

2.3 Parallel System, 14

2.3.1 Probability of Failure-Free Operation, 14

2.3.2 Mean Time to Failure, 18

2.4 Structure of Type “k-out-of-n”, 20

2.5 Realistic Models of Loaded Redundancy, 22

2.5.1 Unreliable Switching Process, 23

2.5.2 Non-Instant Switching, 23

2.5.3 Unreliable Switch, 24

2.5.4 Switch Serving as Interface, 25

2.5.5 Incomplete Monitoring of the Operating Unit, 26

2.5.6 Periodical Monitoring of the Operating Unit, 28

2.6 Reducible Structures, 28

2.6.1 Parallel-Series and Series-Parallel Structures, 28

2.6.2 General Case of Reducible Structures, 29

2.7 Standby Redundancy, 30

2.7.1 Simple Redundant Group, 30

2.7.2 Standby Redundancy of Type “k-out-of-n”, 33

2.8 Realistic Models of Unloaded Redundancy, 34

2.8.1 Unreliable Switching Process, 34

2.8.2 Non-Instant Switching, 35

2.8.3 Unreliable Switch, 35

2.8.4 Switch Serving as Interface, 37

2.8.5 Incomplete Monitoring of the Operating Unit, 38

3 Recoverable Systems: Markov Models 40

3.1 Unit, 40

3.1.1 Markov Model, 41

3.2 Series System, 47

3.2.1 Turning Off System During Recovery, 47

3.2.2 System in Operating State During Recovery: Unrestricted Repair, 49

3.2.3 System in Operating State During Recovery: Restricted Repair, 51

3.3 Dubbed System, 53

3.3.1 General Description, 53

3.3.2 Nonstationary Availability Coefficient, 54

3.3.3 Stationary Availability Coefficient, 58

3.3.4 Probability of Failure-Free Operation, 59

3.3.5 Stationary Coefficient of Interval Availability, 62

3.3.6 Mean Time to Failure, 63

3.3.7 Mean Time Between Failures, 63

3.3.8 Mean Recovery Time, 65

3.4 Parallel Systems, 65

3.5 Structures of Type “m-out-of-n”, 66

4 Recoverable Systems: Heuristic Models 72

4.1 Preliminary Notes, 72

4.2 Poisson Process, 75

4.3 Procedures over Poisson Processes, 78

4.3.1 Thinning Procedure, 78

4.3.2 Superposition Procedure, 80

4.4 Asymptotic Thinning Procedure over Stochastic Point Process, 80

4.5 Asymptotic Superposition of Stochastic Point Processes, 82

4.6 Intersection of Flows of Narrow Impulses, 84

4.7 Heuristic Method for Reliability Analysis of Series Recoverable Systems, 87

4.8 Heuristic Method for Reliability Analysis of Parallel Recoverable Systems, 87

4.8.1 Influence of Unreliable Switching Procedure, 88

4.8.2 Influence of Switch’s Unreliability, 89

4.8.3 Periodical Monitoring of the Operating Unit, 90

4.8.4 Partial Monitoring of the Operating Unit, 91

4.9 Brief Historical Overview and Related Sources, 93

5 Time Redundancy 95

5.1 System with Possibility of Restarting Operation, 95

5.2 Systems with “Admissibly Short Failures”, 98

5.3 Systems with Time Accumulation, 99

5.4 Case Study: Gas Pipeline with an Underground Storage, 100

5.5 Brief Historical Overview and Related Sources, 102

6 “Aging” Units and Systems of “Aging” Units 103

6.1 Chebyshev Bound, 103

6.2 “Aging” Unit, 104

6.3 Bounds for Probability of Failure-Free Operations, 105

6.4 Series System Consisting of “Aging” Units, 108

6.4.1 Preliminary Lemma, 108

6.5 Series System, 110

6.5.1 Probability of Failure-Free Operation, 110

6.5.2 Mean Time to Failure of a Series System, 112

6.6 Parallel System, 114

6.6.1 Probability of Failure-Free Operation, 114

6.6.2 Mean Time to Failure, 117

6.7 Bounds for the Coefficient of Operational Availability, 119

6.8 Brief Historical Overview and Related Sources, 121

7 Two-Pole Networks 123

7.1 General Comments, 123

7.1.1 Method of Direct Enumeration, 125

7.2 Method of Boolean Function Decomposition, 127

7.3 Method of Paths and Cuts, 130

7.3.1 Esary–Proschan Bounds, 130

7.3.2 “Improvements” of Esary–Proschan Bounds, 133

7.3.3 Litvak–Ushakov Bounds, 135

7.3.4 Comparison of the Two Methods, 139

7.4 Brief Historical Overview and Related Sources, 140

8 Performance Effectiveness 143

8.1 Effectiveness Concepts, 143

8.2 General Idea of Effectiveness Evaluation, 145

8.2.1 Conditional Case Study: Airport Traffic Control System, 147

8.3 Additive Type of System Units’ Outcomes, 150

8.4 Case Study: ICBM Control System, 151

8.5 Systems with Intersecting Zones of Action, 153

8.6 Practical Recommendation, 158

8.7 Brief Historical Overview and Related Sources, 160

9 System Survivability 162

9.1 Illustrative Example, 166

9.2 Brief Historical Overview and Related Sources, 167

10 Multistate Systems 169

10.1 Preliminary Notes, 169

10.2 Generating Function, 169

10.3 Universal Generating Function, 172

10.4 Multistate Series System, 174

10.4.1 Series Connection of Piping Runs, 174

10.4.2 Series Connection of Resistors, 177

10.4.3 Series Connections of Capacitors, 179

10.5 Multistate Parallel System, 181

10.5.1 Parallel Connection of Piping Runs, 181

10.5.2 Parallel Connection of Resistors, 182

10.5.3 Parallel Connections of Capacitors, 182

10.6 Reducible Systems, 183

10.7 Conclusion, 190

10.8 Brief Historical Overview and Related Sources, 190

Appendix A Main Distributions Related to Reliability Theory 195

A.1 Discrete Distributions, 195

A.1.1 Degenerate Distribution, 195

A.1.2 Bernoulli Distribution, 196

A.1.3 Binomial Distribution, 197

A.1.4 Poisson Distribution, 198

A.1.5 Geometric Distribution, 200

A.2 Continuous Distributions, 201

A.2.1 Intensity Function, 201

A.2.2 Continuous Uniform Distribution, 202

A.2.3 Exponential Distribution, 203

A.2.4 Erlang Distribution, 204

A.2.5 Hyperexponential Distribution, 205

A.2.6 Normal Distribution, 207

A.2.7Weibull–Gnedenko Distribution, 207

Appendix B Laplace Transformation 209

Appendix C Markov Processes 214

C.1 General Markov Process, 214

C.1.1 Nonstationary Availability Coefficient, 216

C.1.2 Probability of Failure-Free Operation, 218

C.1.3 Stationary Availability Coefficient, 220

C.1.4 Mean Time to Failure and Mean Time Between Failures, 221

C.1.5 Mean Recovery Time, 222

C.2 Birth–Death Process, 223

Appendix D General Bibliography 227

Index 231

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책