logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

[eBook Code] Fast Sequential Monte Carlo Methods for Counting and Optimization

[eBook Code] Fast Sequential Monte Carlo Methods for Counting and Optimization (eBook Code, 1st)

Reuven Y. Rubinstein, Radislav Vaisman, Ad Ridder (지은이)
Wiley
196,760원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
157,400원 -20% 0원
0원
157,400원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

[eBook Code] Fast Sequential Monte Carlo Methods for Counting and Optimization
eBook 미리보기

책 정보

· 제목 : [eBook Code] Fast Sequential Monte Carlo Methods for Counting and Optimization (eBook Code, 1st) 
· 분류 : 외국도서 > 과학/수학/생태 > 수학 > 확률과 통계 > 일반
· ISBN : 9781118612316
· 쪽수 : 208쪽
· 출판일 : 2013-11-06

목차

Preface xi

1. Introduction to Monte Carlo Methods 1

2. Cross-Entropy Method 6

2.1. Introduction 6

2.2. Estimation of Rare-Event Probabilities 7

2.3. Cross-Entrophy Method for Optimization 18

2.3.1. The Multidimensional 0/1 Knapsack Problem 21

2.3.2. Mastermind Game 23

2.3.3. Markov Decision Process and Reinforcement Learning 25

2.4. Continuous Optimization 31

2.5. Noisy Optimization 33

2.5.1. Stopping Criterion 35

3. Minimum Cross-Entropy Method 37

3.1. Introduction 37

3.2. Classic MinxEnt Method 39

3.3. Rare Events and MinxEnt 43

3.4. Indicator MinxEnt Method 47

3.4.1. Connection between CE and IME 51

3.5. IME Method for Combinatorial Optimization 52

3.5.1. Unconstrained Combinatorial Optimization 52

3.5.2. Constrained Combinatorial Optimization: The Penalty Function Approach 54

4. Splitting Method for Counting and Optimization 56

4.1. Background 56

4.2. Quick Glance at the Splitting Method 58

4.3. Splitting Algorithm with Fixed Levels 64

4.4. Adaptive Splitting Algorithm 68

4.5. Sampling Uniformly on Discrete Regions 74

4.6. Splitting Algorithm for Combinatorial Optimization 75

4.7. Enhanced Splitting Method for Counting 76

4.7.1. Counting with the Direct Estimator 76

4.7.2. Counting with the Capture–Recapture Method 77

4.8. Application of Splitting to Reliability Models 79

4.8.1. Introduction 79

4.8.2. Static Graph Reliability Problem 82

4.8.3. BMC Algorithm for Computing S(Y) 84

4.8.4. Gibbs Sampler 85

4.9. Numerical Results with the Splitting Algorithms 86

4.9.1. Counting 87

4.9.2. Combinatorial Optimization 101

4.9.3. Reliability Models 102

4.10. Appendix: Gibbs Sampler 104

5. Stochastic Enumeration Method 106

5.1. Introduction 106

5.2. OSLA Method and Its Extensions 110

5.2.1. Extension of OSLA: nSLA Method 112

5.2.2. Extension of OSLA for SAW: Multiple Trajectories 115

5.3. SE Method 120

5.3.1. SE Algorithm 120

5.4. Applications of SE 127

5.4.1. Counting the Number of Trajectories in a Network 127

5.4.2. SE for Probabilities Estimation 131

5.4.3. Counting the Number of Perfect Matchings in a Graph 132

5.4.4. Counting SAT 135

5.5. Numerical Results 136

5.5.1. Counting SAW 137

5.5.2. Counting the Number of Trajectories in a Network 137

5.5.3. Counting the Number of Perfect Matchings in a Graph 140

5.5.4. Counting SAT 143

5.5.5. Comparison of SE with Splitting and SampleSearch 146

A. Additional Topics 148

A.1. Combinatorial Problems 148

A.1.1. Counting 149

A.1.2. Combinatorial Optimization 154

A.2. Information 162

A.2.1. Shannon Entropy 162

A.2.2. Kullback–Leibler Cross-Entropy 163

A.3. Efficiency of Estimators 164

A.3.1. Complexity 165

A.3.2. Complexity of Randomized Algorithms 166

Bibliography 169

Abbreviations and Acronyms 177

List of Symbols 178

Index 181

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책