logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

[eBook Code] Macro- to Microscale Heat Transfer

[eBook Code] Macro- to Microscale Heat Transfer (eBook Code, 2nd)

(The Lagging Behavior)

D. Y. Tzou (지은이)
  |  
Wiley
2014-09-18
  |  
209,540원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
알라딘 167,630원 -20% 0원 0원 167,630원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
로딩중

e-Book

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

해외직구

책 이미지

[eBook Code] Macro- to Microscale Heat Transfer

책 정보

· 제목 : [eBook Code] Macro- to Microscale Heat Transfer (eBook Code, 2nd) (The Lagging Behavior)
· 분류 : 외국도서 > 기술공학 > 기술공학 > 기계공학
· ISBN : 9781118818268
· 쪽수 : 576쪽

목차

Preface xi

Nomenclature xiii

1 Heat Transport by Phonons and Electrons 1

1.1 Challenges in Microscale Heat Conduction 2

1.2 Phonon–Electron Interaction Model 5

1.2.1 Single Energy Equation 10

1.3 Phonon-Scattering Model 11

1.3.1 Operator Method 13

1.3.2 Phonon Hydrodynamics 15

1.4 Phonon Radiative Transfer Model 18

1.5 Relaxation Behavior in Thermal Waves 24

1.5.1 Engineering Assessment of the Relaxation Time 26

1.5.2 Admissibility with Phonon Radiative Transport Phenomena 27

1.6 Micro/Nanoscale Thermal Properties 28

1.6.1 Heat Capacity 29

1.6.2 Thermal Conductivity 30

1.6.3 Normal and Umklapp Relaxation Times 34

1.7 Size Effect 37

1.8 Phase Lags 51

References 56

2 Lagging Behavior 61

2.1 Phase-Lag Concept 62

2.2 Internal Mechanisms 64

2.3 Temperature Formulation 66

2.4 Heat Flux Formulation 69

2.5 Methods of Solutions 70

2.5.1 Method of Laplace Transform 73

2.5.2 Separation of Variables 82

2.5.3 Method of Fourier Transform 87

2.6 Precedence Switching in Fast-Transient Processes 90

2.7 Rate Effect 91

2.8 Problems Involving Heat Fluxes and Finite Boundaries 92

2.9 Characteristic Times 99

2.10 Alternating Sequence 103

2.11 Determination of Phase Lags 104

2.12 Depth of Thermal Penetration 108

Appendix 2.1 FORTRAN Code for the Riemann-Sum Approximation of Laplace Inversion 117

Appendix 2.2 Mathematica Code for Calculating the Depth of Thermal Penetration 122

References 122

3 Thermodynamic and Kinetic Foundation 125

3.1 Classical Thermodynamics 126

3.2 Extended Irreversible Thermodynamics 131

3.3 Lagging Behavior 135

3.4 Thermomechanical Coupling 137

3.4.1 Rigid Conductors 141

3.4.2 Isothermal Deformation 142

3.5 Dynamic and Nonequilibrium Temperatures 143

3.6 Conductive and Thermodynamic Temperatures 146

3.7 Kinetic Theory 149

References 156

4 Temperature Pulses in Superfluid Liquid Helium 159

4.1 Second Sound in Liquid Helium 160

4.2 Experimental Observations 163

4.3 Lagging Behavior 164

4.4 Heating Pulse in Terms of Fluxes 167

4.5 Overshooting Phenomenon of Temperature 172

4.6 Longitudinal and Transverse Pulses 181

4.6.1 Lamé Potential 182

4.6.2 Helmholtz Potential 183

References 190

5 Ultrafast Pulse-Laser Heating on Metal Films 193

5.1 Experimental Observations 194

5.2 Laser Light Intensity 196

5.2.1 Gaussian Distribution 196

5.2.2 Alternate Form of Light Intensity 197

5.3 Microscopic Phonon–Electron Interaction Model 200

5.4 Characteristic Times – The Lagging Behavior 202

5.5 Phase Lags in Metal Films 204

5.6 Effect of Temperature-Dependent Thermal Properties 210

5.7 Cumulative Phase Lags 211

5.8 Conduction in the Metal Lattice 213

5.9 Multiple-Layered Films 219

5.9.1 Mixed Formulation 220

5.9.2 Initial Conditions for Heat Flux 221

5.9.3 Laplace Transform Solution 222

5.9.4 Surface Reflectivity 224

References 228

6 Nonhomogeneous Lagging Response in Porous Media 231

6.1 Experimental Observations 232

6.2 Mathematical Formulation 234

6.3 Short-Time Responses in the Near Field 236

6.4 Two-Step Process of Energy Exchange 240

6.5 Lagging Behavior 241

6.6 Nonhomogeneous Phase Lags 243

6.7 Precedence Switching in the Fast-Transient Process 249

References 253

7 Thermal Lagging in Amorphous Media 255

7.1 Experimental Observations 256

7.2 Fourier Diffusion: The t–1/2 Behavior 258

7.3 Fractal Behavior in Space 259

7.4 Lagging Behavior in Time 262

7.4.1 Classical Diffusion, Z = 1 264

7.4.2 Partial Expansions 265

7.4.3 Riemann-Sum Approximation 265

7.4.4 Real-Time Responses 269

7.5 Thermal Control 271

References 279

8 Material Defects in Thermal Processing 281

8.1 Localization of Heat Flux 282

8.1.1 Microcracks 284

8.2 Energy Transport around a Suddenly Formed Crack 288

8.3 Thermal Shock Formation – Fast-Transient Effect 290

8.3.1 Asymptotic Analysis 291

8.3.2 Subsonic Regime with M< 1 294

8.3.3 Supersonic Regime with M> 1 298

8.3.4 Transonic Stage with M= 1 301

8.4 Diminution of Damage – Microscale Interaction Effect 304

8.4.1 Eigenvalues 308

8.4.2 Eigenfunctions 308

8.5 High Heat Flux around a Microvoid 311

8.5.1 Mathematical Formulation 312

8.5.2 Linear Decomposition 314

8.5.3 Steady-State Solution 315

8.5.4 Fast-Transient Component 317

8.5.5 Flux Intensification 319

References 324

9 Lagging Behavior in other Transport Processes 327

9.1 Film Growth 328

9.1.1 Lagging Behavior 330

9.1.2 Thermal Oxidation of Silicon 336

9.1.3 Intermetallics 340

9.2 Thermoelectricity 343

9.2.1 Thermoelectric Coupling 344

9.2.2 Lagging Behavior 346

9.2.3 Dominating Parameters 348

9.3 Visco/Thermoelastic Response 351

9.4 Nanofluids 352

References 355

10 Lagging Behavior in Biological Systems 359

10.1 Bioheat Equations 360

10.1.1 Two-Equation Model 360

10.1.2 Three-Equation Model 363

10.2 Mass Interdiffusion 370

10.3 Lagging Behavior 376

10.3.1 Rapidly Stretched Springs 376

10.3.2 One-Dimensional Fins 378

References 379

11 Thermomechanical Coupling 381

11.1 Thermal Expansion 382

11.1.1 Mechanically Driven Cooling Phenomenon 385

11.1.2 Thermomechanical Coupling Factor 386

11.1.3 Apparent Thermal Conductivity 388

11.2 Thermoelastic Deformation 388

11.3 Mechanically Driven Cooling Waves 391

11.3.1 Heat Transport by Diffusion 396

11.3.2 Heat Transport by Thermal Waves 398

11.3.3 Lagging Behavior in Heat Transport 406

11.4 Thermal Stresses in Rapid Heating 408

11.4.1 Diffusion 413

11.4.2 CV Waves 414

11.4.3 Lagging Behavior 417

11.5 Hot-Electron Blast 419

References 422

12 High-Order Effect and Nonlocal Behavior 425

12.1 Intrinsic Structures of T Waves 426

12.1.1 Thermal Relaxation of Electrons 427

12.1.2 Relaxation of Internal Energy 431

12.1.3 Propagation of T Waves 436

12.1.4 Effect of τT 2 439

12.1.5 Effect of Microvoids on the Amplification of T Waves 443

12.2 Multiple Carriers 447

12.2.1 Two-Carrier System 448

12.2.2 Three-Carrier System 449

12.2.3 N-Carrier System 452

12.3 Thermal Resonance 453

12.4 Heat Transport in Deformable Conductors 458

12.4.1 Energy Equation 459

12.4.2 Momentum Equation 472

12.5 Nonlocal Behavior 473

12.5.1 Nonlocal Lengths 475

12.5.2 Thermomass Model 478

12.5.3 Deformable Conductors 486

12.5.4 Effect of Dual Conduction 488

References 490

13 Numerical Methods 491

13.1 Neumann Stability 492

13.1.1 Interfacial Resistance 495

13.2 Finite-Difference Differential Formulation 501

13.2.1 Mixed Formulation 503

13.3 Hot-Electron Blast 507

13.3.1 Full Coupling 520

13.4 Thermoelectric Coupling 531

13.4.1 The Case of Constant J 531

13.4.2 The Case of Constant E 533

Appendix 13.1 Mathematica Code for the Finite-Difference Differential Method: Equations (13.23)–(13.26) 535

Appendix 13.2 Mathematica Code for the Finite-Difference Differential Method: Equations (13.35), (13.37), and (13.38) 537

Appendix 13.3 Mathematica Code (V5.0) for the Finite-Difference

Differential Method: Equations (13.51) and (13.52) 539

Appendix 13.4 Mathematica Code (V5.0) for the Finite-Difference

Differential Method: Equations (13.62), (13.63) and (13.52) 541

Appendix 13.5 Mathematica Code (V5.0) for the Finite-Difference

Differential Method: Equations (13.68) and (13.66) 543

Appendix 13.6 Mathematica Code (V5.0) for the Finite-Difference

Differential Method: Equations (13.69) and (13.66) 544

References 545

Index 547

저자소개

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책