logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Computer Vision in Vehicle Technology: Land, Sea, and Air

Computer Vision in Vehicle Technology: Land, Sea, and Air (Hardcover)

Tomas Pajdla, Atsushi Imiya, Antonio M. Lopez (지은이)
John Wiley & Sons Inc
223,750원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
183,470원 -18% 0원
9,180원
174,290원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Computer Vision in Vehicle Technology: Land, Sea, and Air
eBook 미리보기

책 정보

· 제목 : Computer Vision in Vehicle Technology: Land, Sea, and Air (Hardcover) 
· 분류 : 외국도서 > 컴퓨터 > 컴퓨터 비전/패턴 인식
· ISBN : 9781118868072
· 쪽수 : 216쪽
· 출판일 : 2017-04-17

목차

List of Contributors ix

Preface xi

Abbreviations and Acronyms xiii

1 Computer Vision in Vehicles 1
Reinhard Klette

1.1 Adaptive Computer Vision for Vehicles 1

1.1.1 Applications 1

1.1.2 Traffic Safety and Comfort 2

1.1.3 Strengths of (Computer) Vision 2

1.1.4 Generic and Specific Tasks 3

1.1.5 Multi-module Solutions 4

1.1.6 Accuracy, Precision, and Robustness 5

1.1.7 Comparative Performance Evaluation 5

1.1.8 There Are Many Winners 6

1.2 Notation and Basic Definitions 6

1.2.1 Images and Videos 6

1.2.2 Cameras 8

1.2.3 Optimization 10

1.3 Visual Tasks 12

1.3.1 Distance 12

1.3.2 Motion 16

1.3.3 Object Detection and Tracking 18

1.3.4 Semantic Segmentation 21

1.4 Concluding Remarks 23

Acknowledgments 23

2 Autonomous Driving 24
Uwe Franke

2.1 Introduction 24

2.1.1 The Dream 24

2.1.2 Applications 25

2.1.3 Level of Automation 26

2.1.4 Important Research Projects 27

2.1.5 Outdoor Vision Challenges 30

2.2 Autonomous Driving in Cities 31

2.2.1 Localization 33

2.2.2 Stereo Vision-Based Perception in 3D 36

2.2.3 Object Recognition 43

2.3 Challenges 49

2.3.1 Increasing Robustness 49

2.3.2 Scene Labeling 50

2.3.3 Intention Recognition 52

2.4 Summary 52

Acknowledgments 54

3 Computer Vision for MAVs 55
Friedrich Fraundorfer

3.1 Introduction 55

3.2 System and Sensors 57

3.3 Ego-Motion Estimation 58

3.3.1 State Estimation Using Inertial and Vision Measurements 58

3.3.2 MAV Pose from Monocular Vision 62

3.3.3 MAV Pose from Stereo Vision 63

3.3.4 MAV Pose from Optical Flow Measurements 65

3.4 3D Mapping 67

3.5 Autonomous Navigation 71

3.6 Scene Interpretation 72

3.7 Concluding Remarks 73

4 Exploring the Seafloor with Underwater Robots 75
Rafael Garcia, Nuno Gracias, Tudor Nicosevici, Ricard Prados, Natalia Hurtos, Ricard Campos, Javier Escartin, Armagan Elibol, Ramon Hegedus and Laszlo Neumann

4.1 Introduction 75

4.2 Challenges of Underwater Imaging 77

4.3 Online Computer Vision Techniques 79

4.3.1 Dehazing 79

4.3.2 Visual Odometry 84

4.3.3 SLAM 87

4.3.4 Laser Scanning 91

4.4 Acoustic Imaging Techniques 92

4.4.1 Image Formation 92

4.4.2 Online Techniques for Acoustic Processing 95

4.5 Concluding Remarks 98

Acknowledgments 99

5 Vision-Based Advanced Driver Assistance Systems 100
David Gerónimo, David Vázquez and Arturo de la Escalera

5.1 Introduction 100

5.2 Forward Assistance 101

5.2.1 Adaptive Cruise Control (ACC) and Forward Collision Avoidance (FCA) 101

5.2.2 Traffic Sign Recognition (TSR) 103

5.2.3 Traffic Jam Assist (TJA) 105

5.2.4 Vulnerable Road User Protection 106

5.2.5 Intelligent Headlamp Control 109

5.2.6 Enhanced Night Vision (Dynamic Light Spot) 110

5.2.7 Intelligent Active Suspension 111

5.3 Lateral Assistance 112

5.3.1 Lane Departure Warning (LDW) and Lane Keeping System (LKS) 112

5.3.2 Lane Change Assistance (LCA) 115

5.3.3 Parking Assistance 116

5.4 Inside Assistance 117

5.4.1 Driver Monitoring and Drowsiness Detection 117

5.5 Conclusions and Future Challenges 119

5.5.1 Robustness 119

5.5.2 Cost 121

Acknowledgments 121

6 Application Challenges from a Bird’s-Eye View 122
Davide Scaramuzza

6.1 Introduction to Micro Aerial Vehicles (MAVs) 122

6.1.1 Micro Aerial Vehicles (MAVs) 122

6.1.2 Rotorcraft MAVs 123

6.2 GPS-Denied Navigation 124

6.2.1 Autonomous Navigation with Range Sensors 124

6.2.2 Autonomous Navigation with Vision Sensors 125

6.2.3 SFLY: Swarm of Micro Flying Robots 126

6.2.4 SVO, a Visual-Odometry Algorithm for MAVs 126

6.3 Applications and Challenges 127

6.3.1 Applications 127

6.3.2 Safety and Robustness 128

6.4 Conclusions 132

7 Application Challenges of Underwater Vision 133
Nuno Gracias, Rafael Garcia, Ricard Campos, Natalia Hurtos, Ricard Prados, ASM Shihavuddin, Tudor Nicosevici, Armagan Elibol, Laszlo Neumann and Javier Escartin

7.1 Introduction 133

7.2 Offline Computer Vision Techniques for Underwater Mapping and Inspection 134

7.2.1 2D Mosaicing 134

7.2.2 2.5D Mapping 144

7.2.3 3D Mapping 146

7.2.4 Machine Learning for Seafloor Classification 154

7.3 Acoustic Mapping Techniques 157

7.4 Concluding Remarks 159

8 Closing Notes 161
Antonio M. López

References 164

Index 195

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책