logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

[eBook Code] Bayesian Signal Processing

[eBook Code] Bayesian Signal Processing (eBook Code, 2nd)

(Classical, Modern, and Particle Filtering Methods)

James V. Candy (지은이)
  |  
Wiley-IEEE Press
2016-06-20
  |  
199,050원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
알라딘 159,240원 -20% 0원 0원 159,240원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
로딩중

e-Book

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

해외직구

책 이미지

[eBook Code] Bayesian Signal Processing

책 정보

· 제목 : [eBook Code] Bayesian Signal Processing (eBook Code, 2nd) (Classical, Modern, and Particle Filtering Methods)
· 분류 : 외국도서 > 기술공학 > 기술공학 > 신호/신호처리
· ISBN : 9781119125471
· 쪽수 : 640쪽

목차

Preface to Second Edition xiii

References xv

Preface to First Edition xvii

References xxiii

Acknowledgments xxvii

List of Abbreviations xxix

1 Introduction 1

1.1 Introduction 1

1.2 Bayesian Signal Processing 1

1.3 Simulation-Based Approach to Bayesian Processing 4

1.3.1 Bayesian Particle Filter 8

1.4 Bayesian Model-Based Signal Processing 9

1.5 Notation and Terminology 13

References 15

Problems 16

2 Bayesian Estimation 20

2.1 Introduction 20

2.2 Batch Bayesian Estimation 20

2.3 Batch Maximum Likelihood Estimation 23

2.3.1 Expectation–Maximization Approach to Maximum Likelihood 27

2.3.2 EM for Exponential Family of Distributions 30

2.4 Batch Minimum Variance Estimation 34

2.5 Sequential Bayesian Estimation 37

2.5.1 Joint Posterior Estimation 41

2.5.2 Filtering Posterior Estimation 42

2.5.3 Likelihood Estimation 45

2.6 Summary 45

References 46

Problems 47

3 Simulation-Based Bayesian Methods 52

3.1 Introduction 52

3.2 Probability Density Function Estimation 54

3.3 Sampling Theory 58

3.3.1 Uniform Sampling Method 60

3.3.2 Rejection Sampling Method 64

3.4 Monte Carlo Approach 66

3.4.1 Markov Chains 71

3.4.2 Metropolis–Hastings Sampling 74

3.4.3 Random Walk Metropolis–Hastings Sampling 75

3.4.4 Gibbs Sampling 79

3.4.5 Slice Sampling 81

3.5 Importance Sampling 83

3.6 Sequential Importance Sampling 87

3.7 Summary 90

References 91

Problems 94

4 State–Space Models for Bayesian Processing 98

4.1 Introduction 98

4.2 Continuous-Time State–Space Models 99

4.3 Sampled-Data State–Space Models 103

4.4 Discrete-Time State–Space Models 107

4.4.1 Discrete Systems Theory 109

4.5 Gauss–Markov State–Space Models 115

4.5.1 Continuous-Time/Sampled-Data Gauss–Markov Models 115

4.5.2 Discrete-Time Gauss–Markov Models 117

4.6 Innovations Model 123

4.7 State–Space Model Structures 124

4.7.1 Time Series Models 124

4.7.2 State–Space and Time Series Equivalence Models 131

4.8 Nonlinear (Approximate) Gauss–Markov State–Space Models 137

4.9 Summary 142

References 142

Problems 143

5 Classical Bayesian State–Space Processors 150

5.1 Introduction 150

5.2 Bayesian Approach to the State–Space 151

5.3 Linear Bayesian Processor (Linear Kalman Filter) 153

5.4 Linearized Bayesian Processor (Linearized Kalman Filter) 162

5.5 Extended Bayesian Processor (Extended Kalman Filter) 170

5.6 Iterated-Extended Bayesian Processor (Iterated-Extended Kalman Filter) 179

5.7 Practical Aspects of Classical Bayesian Processors 185

5.8 Case Study: RLC Circuit Problem 190

5.9 Summary 194

References 195

Problems 196

6 Modern Bayesian State–Space Processors 201

6.1 Introduction 201

6.2 Sigma-Point (Unscented) Transformations 202

6.2.1 Statistical Linearization 202

6.2.2 Sigma-Point Approach 205

6.2.3 SPT for Gaussian Prior Distributions 210

6.3 Sigma-Point Bayesian Processor (Unscented Kalman Filter) 213

6.3.1 Extensions of the Sigma-Point Processor 222

6.4 Quadrature Bayesian Processors 223

6.5 Gaussian Sum (Mixture) Bayesian Processors 224

6.6 Case Study: 2D-Tracking Problem 228

6.7 Ensemble Bayesian Processors (Ensemble Kalman Filter) 234

6.8 Summary 245

References 247

Problems 249

7 Particle-Based Bayesian State–Space Processors 253

7.1 Introduction 253

7.2 Bayesian State–Space Particle Filters 253

7.3 Importance Proposal Distributions 258

7.3.1 Minimum Variance Importance Distribution 258

7.3.2 Transition Prior Importance Distribution 261

7.4 Resampling 262

7.4.1 Multinomial Resampling 267

7.4.2 Systematic Resampling 268

7.4.3 Residual Resampling 269

7.5 State–Space Particle Filtering Techniques 270

7.5.1 Bootstrap Particle Filter 270

7.5.2 Auxiliary Particle Filter 274

7.5.3 Regularized Particle Filter 281

7.5.4 MCMC Particle Filter 283

7.5.5 Linearized Particle Filter 286

7.6 Practical Aspects of Particle Filter Design 290

7.6.1 Sanity Testing 290

7.6.2 Ensemble Estimation 291

7.6.3 Posterior Probability Validation 293

7.6.4 Model Validation Testing 304

7.7 Case Study: Population Growth Problem 311

7.8 Summary 317

References 318

Problems 321

8 Joint Bayesian State/Parametric Processors 327

8.1 Introduction 327

8.2 Bayesian Approach to Joint State/Parameter Estimation 328

8.3 Classical/Modern Joint Bayesian State/Parametric Processors 330

8.3.1 Classical Joint Bayesian Processor 331

8.3.2 Modern Joint Bayesian Processor 338

8.4 Particle-Based Joint Bayesian State/Parametric Processors 341

8.4.1 Parametric Models 342

8.4.2 Joint Bayesian State/Parameter Estimation 344

8.5 Case Study: Random Target Tracking Using a Synthetic Aperture Towed Array 349

8.6 Summary 359

References 360

Problems 362

9 Discrete Hidden Markov Model Bayesian Processors 367

9.1 Introduction 367

9.2 Hidden Markov Models 367

9.2.1 Discrete-Time Markov Chains 368

9.2.2 Hidden Markov Chains 369

9.3 Properties of the Hidden Markov Model 372

9.4 HMM Observation Probability: Evaluation Problem 373

9.5 State Estimation in HMM: The Viterbi Technique 376

9.5.1 Individual Hidden State Estimation 377

9.5.2 Entire Hidden State Sequence Estimation 380

9.6 Parameter Estimation in HMM: The EM/Baum–Welch Technique 384

9.6.1 Parameter Estimation with State Sequence Known 385

9.6.2 Parameter Estimation with State Sequence Unknown 387

9.7 Case Study: Time-Reversal Decoding 390

9.8 Summary 395

References 396

Problems 398

10 Sequential Bayesian Detection 401

10.1 Introduction 401

10.2 Binary Detection Problem 402

10.2.1 Classical Detection 403

10.2.2 Bayesian Detection 407

10.2.3 Composite Binary Detection 408

10.3 Decision Criteria 411

10.3.1 Probability-of-Error Criterion 411

10.3.2 Bayes Risk Criterion 412

10.3.3 Neyman–Pearson Criterion 414

10.3.4 Multiple (Batch) Measurements 416

10.3.5 Multichannel Measurements 418

10.3.6 Multiple Hypotheses 420

10.4 Performance Metrics 423

10.4.1 Receiver Operating Characteristic (ROC) Curves 424

10.5 Sequential Detection 440

10.5.1 Sequential Decision Theory 442

10.6 Model-Based Sequential Detection 447

10.6.1 Linear Gaussian Model-Based Processor 447

10.6.2 Nonlinear Gaussian Model-Based Processor 451

10.6.3 Non-Gaussian Model-Based Processor 454

10.7 Model-Based Change (Anomaly) Detection 459

10.7.1 Model-Based Detection 460

10.7.2 Optimal Innovations Detection 461

10.7.3 Practical Model-Based Change Detection 463

10.8 Case Study: Reentry Vehicle Change Detection 468

10.8.1 Simulation Results 471

10.9 Summary 472

References 475

Problems 477

11 Bayesian Processors for Physics-Based Applications 484

11.1 Optimal Position Estimation for the Automatic Alignment 484

11.1.1 Background 485

11.1.2 Stochastic Modeling of Position Measurements 487

11.1.3 Bayesian Position Estimation and Detection 489

11.1.4 Application: Beam Line Data 490

11.1.5 Results: Beam Line (KDP Deviation) Data 492

11.1.6 Results: Anomaly Detection 494

11.2 Sequential Detection of Broadband Ocean Acoustic Sources 497

11.2.1 Background 498

11.2.2 Broadband State–Space Ocean Acoustic Propagators 500

11.2.3 Discrete Normal-Mode State–Space Representation 504

11.2.4 Broadband Bayesian Processor 504

11.2.5 Broadband Particle Filters 505

11.2.6 Broadband Bootstrap Particle Filter 507

11.2.7 Bayesian Performance Metrics 509

11.2.8 Sequential Detection 509

11.2.9 Broadband BSP Design 512

11.2.10 Summary 520

11.3 Bayesian Processing for Biothreats 520

11.3.1 Background 521

11.3.2 Parameter Estimation 524

11.3.3 Bayesian Processor Design 525

11.3.4 Results 526

11.4 Bayesian Processing for the Detection of Radioactive Sources 528

11.4.1 Physics-Based Processing Model 528

11.4.2 Radionuclide Detection 531

11.4.3 Implementation 535

11.4.4 Detection 539

11.4.5 Data 540

11.4.6 Radionuclide Detection 540

11.4.7 Summary 541

11.5 Sequential Threat Detection: An X-ray Physics-Based Approach 541

11.5.1 Physics-Based Models 543

11.5.2 X-ray State–Space Simulation 547

11.5.3 Sequential Threat Detection 549

11.5.4 Summary 554

11.6 Adaptive Processing for Shallow Ocean Applications 554

11.6.1 State–Space Propagator 555

11.6.2 Processors 562

11.6.3 Model-Based Ocean Acoustic Processing 565

11.6.4 Summary 572

References 572

Appendix: Probability and Statistics Overview 576

A.1 Probability Theory 576

A.2 Gaussian Random Vectors 582

A.3 Uncorrelated Transformation: Gaussian Random Vectors 583

References 584

Index 585

저자소개

James V. Candy (지은이)    정보 더보기
펼치기
이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책