logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

[eBook Code] Evolutionary Computation with Biogeography-based Optimization

[eBook Code] Evolutionary Computation with Biogeography-based Optimization (eBook Code, 1st)

Dan Simon, Haiping Ma (지은이)
Wiley-ISTE
243,790원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
195,030원 -20% 0원
0원
195,030원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

[eBook Code] Evolutionary Computation with Biogeography-based Optimization
eBook 미리보기

책 정보

· 제목 : [eBook Code] Evolutionary Computation with Biogeography-based Optimization (eBook Code, 1st) 
· 분류 : 외국도서 > 컴퓨터 > 컴퓨터 엔지니어링
· ISBN : 9781119136545
· 쪽수 : 344쪽
· 출판일 : 2017-01-19

목차

Chapter 1. The Science of Biogeography 1

1.1. Introduction  1

1.2. Island biogeography  3

1.3. Influence factors for biogeography  6

Chapter 2. Biogeography and Biological Optimization  11

2.1. A mathematical model of biogeography 11

2.2. Biogeography as an optimization process  16

2.3. Biological optimization  19

2.3.1. Genetic algorithms  19

2.3.2. Evolution strategies  20

2.3.3. Particle swarm optimization 21

2.3.4. Artificial bee colony algorithm 22

2.4. Conclusion 23

Chapter 3. A Basic BBO Algorithm 25

3.1. BBO definitions and algorithm  25

3.1.1. Migration 26

3.1.2. Mutation  27

3.1.3. BBO implementation 27

3.2. Differences between BBO and other optimization algorithms  35

3.2.1. BBO and genetic algorithms 35

3.2.2. BBO and other algorithms  36

3.3. Simulations 37

3.4. Conclusion 44

Chapter 4. BBO Extensions 45

4.1. Migration curves  45

4.2. Blended migration 49

4.3. Other approaches to BBO 51

4.4. Applications  56

4.5. Conclusion 59

Chapter 5. BBO as a Markov Process 61

5.1. Markov definitions and notations  61

5.2. Markov model of BBO  72

5.3. BBO convergence 79

5.4. Markov models of BBO extensions 90

5.5. Conclusions  99

Chapter 6. Dynamic System Models of BBO 103

6.1. Basic notation 103

6.2. Dynamic system models of BBO 105

6.3. Applications to benchmark problems  119

6.4. Conclusions  122

Chapter 7. Statistical Mechanics Approximations of BBO  123

7.1. Preliminary foundation  123

7.2. Statistical mechanics model of BBO 128

7.2.1. Migration 128

7.2.2. Mutation  134

7.3. Further discussion 141

7.3.1. Finite population effects 141

7.3.2. Separable fitness functions  142

7.4. Conclusions  143

Chapter 8. BBO for Combinatorial Optimization  145

8.1. Traveling salesman problem 147

8.2. BBO for the TSP  148

8.2.1. Population initialization 148

8.2.2. Migration in the TSP 150

8.2.3. Mutation in the TSP 157

8.2.4. Implementation framework 159

8.3. Graph coloring 163

8.4. Knapsack problem 165

8.5. Conclusion 167

Chapter 9. Constrained BBO  169

9.1. Constrained optimization 170

9.2. Constraint-handling methods 172

9.2.1. Static penalty methods  172

9.2.2. Superiority of feasible points  173

9.2.3. The eclectic evolutionary algorithm 174

9.2.4. Dynamic penalty methods  174

9.2.5. Adaptive penalty methods  176

9.2.6. The niched-penalty approach  177

9.2.7. Stochastic ranking  178

9.2.8. ε-level comparisons  178

9.3. BBO for constrained optimization  179

9.4. Conclusion 185

Chapter 10. BBO in Noisy Environments 187

10.1. Noisy fitness functions  188

10.2. Influence of noise on BBO 190

10.3. BBO with re-sampling  193

10.4. The Kalman BBO  196

10.5. Experimental results 199

10.6. Conclusion  201

Chapter 11. Multi-objective BBO  203

11.1. Multi-objective optimization problems 204

11.2. Multi-objective BBO 211

11.2.1. Vector evaluated BBO 211

11.2.2. Non-dominated sorting BBO  213

11.2.3. Niched Pareto BBO 216

11.2.4. Strength Pareto BBO  218

11.3. Real-world applications 223

11.3.1. Warehouse scheduling model 223

11.3.2. Optimization of warehouse scheduling  229

11.4. Conclusion  231

Chapter 12. Hybrid BBO Algorithms  233

12.1. Opposition-based BBO 234

12.1.1. Opposition definitions and concepts  234

12.1.2. Oppositional BBO  236

12.1.3. Experimental results 238

12.2. BBO with local search  240

12.2.1. Local search methods  240

12.2.2. Simulation results  245

12.3. BBO with other EAs 247

12.3.1. Iteration-level hybridization  247

12.3.2. Algorithm-level hybridization 250

12.3.3. Experimental results 254

12.4. Conclusion  256

Appendices 259

Appendix A. Unconstrained Benchmark Functions  261

Appendix B. Constrained Benchmark Functions  265

Appendix C. Multi-objective Benchmark Functions  289

Bibliography 309

Index 325

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책