logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

[eBook Code] Predictive Analytics

[eBook Code] Predictive Analytics (eBook Code, 2nd)

(The Power to Predict Who Will Click, Buy, Lie, or Die)

Eric Siegel (지은이)
Wiley
39,480원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
31,580원 -20% 0원
0원
31,580원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

[eBook Code] Predictive Analytics
eBook 미리보기

책 정보

· 제목 : [eBook Code] Predictive Analytics (eBook Code, 2nd) (The Power to Predict Who Will Click, Buy, Lie, or Die)
· 분류 : 외국도서 > 경제경영 > 소비자행동론
· ISBN : 9781119145684
· 쪽수 : 368쪽
· 출판일 : 2016-01-13

목차

Foreword Thomas H. Davenport xvii

Preface to the Revised and Updated Edition xxi

What’s new and who’s this book for—the Predictive Analytics FAQ

Preface to the Original Edition xxix

What is the occupational hazard of predictive analytics?

Introduction

The Prediction Effect 1

How does predicting human behavior combat risk, fortify healthcare,toughen crime fighting, boost sales, and cut costs? Why must a computer learn in order to predict? How can lousy predictions be extremely valuable?Whatmakes data exceptionally exciting?How is data science like porn?Whyshouldn’t computers be called computers? Why do organizations predict when you will die?

Chapter 1 Liftoff! Prediction Takes Action (deployment) 23

How much guts does it take to deploy a predictive model into field operation, and what do you stand to gain?Whathappens when aman invests his entire life savings into his own predictive stock market trading system?

Chapter 2 With Power Comes Responsibility: Hewlett-Packard,Target, the Cops, and the NSA Deduce Your Secrets (ethics) 47

How do we safely harness a predictive machine that can foresee job resignation, pregnancy, and crime? Are civil liberties at risk? Why does one leading health insurance company predict policyholder death?Two extended sidebars reveal: 1) Does the government undertake fraud detection more for its citizens or for self-preservation, and 2) for what compelling purpose does the NSA need your data even if you have no connection to crime whatsoever, and can the agency use machine learning supercomputers to fight terrorism without endangering human rights?

Chapter 3 The Data Effect: A Glut at the End of the Rainbow (data) 103

We are upto our ears in data, but how much can this raw material really tell us? What actually makes it predictive? What are the most bizarre discoveries from data? When we find an interesting insight, why are we often better off not asking why? In what way is bigger data more dangerous? How do we avoid being fooled by random noise and ensure scientific discoveries are trustworthy?

Chapter 4 The Machine That Learns: A Look inside Chase’s Prediction of Mortgage Risk (modeling) 147

What form of risk has the perfect disguise? How does prediction transform risk to opportunity? What should all businesses learn from insurance companies? Why does machine learning require art in addition to science? What kind of predictive model can be understood by everyone? How can we confidently trust a machine’s predictions? Why couldn’t prediction prevent the global financial crisis?

Chapter 5 The Ensemble Effect: Netflix, Crowdsourcing, and Supercharging Prediction (ensembles) 185

To crowd source predictive analytics—outsource it to the public at large—a company launches its strategy, data, and research discoveries into the public spotlight. How can this possibly help the company compete? What key innovation in predictive analytics has crowd sourcing helped develop? Must supercharging predictive precision involve overwhelming complexity, or is there an elegant solution? Is there wisdom in nonhuman crowds?

Chapter 6 Watson and the Jeopardy! Challenge (question answering) 207

How does Watson—IBM’s Jeopardy!-playing computer—work? Why does it need predictive modeling in order to answer questions, and what secret sauce empowers its high performance? How does the iPhone’s Siri compare? Why is human language such a challenge for computers? Is artificial intelligence possible?

Chapter 7 Persuasion by the Numbers: How Telenor, U.S. Bank, and the Obama Campaign Engineered Influence (uplift) 251

What is the scientific key to persuasion? Why does some marketing fiercely backfire? Why is human behavior the wrong thing to predict? What should all businesses learn about persuasion from presidential campaigns? What voter predictions helped Obama win in 2012 more than the detection of swing voters? How could doctors kill fewer patients inadvertently? How is a person like a quantum particle? Riddle: What often happens to you that cannot be perceived and that you can’t even be sure has happened afterward—but that can be predicted in advance?

Afterword 291

Eleven Predictions for the First Hour of 2022

Appendices

A. The Five Effects of Prediction 295

B. Twenty Applications of Predictive Analytics 296

C. Prediction People—Cast of “Characters” 300

Hands-On Guide 303

Resources for Further Learning

Acknowledgments 307

About the Author 311

Index 313

Also see the Central Tables (color insert) for a cross-industry compendium of 182 examples of predictive analytics. This book’s Notes—120 pages of citations and comments pertaining to the chapters above—are available online at www.PredictiveNotes.com.

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책