logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

[eBook Code] Fundamentals of Computational Intelligence

[eBook Code] Fundamentals of Computational Intelligence (eBook Code, 1st)

(Neural Networks, Fuzzy Systems, and Evolutionary Computation)

Derong Liu, James M. Keller, B. David (지은이)
Wiley-IEEE Press
177,950원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
142,360원 -20% 0원
0원
142,360원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

[eBook Code] Fundamentals of Computational Intelligence
eBook 미리보기

책 정보

· 제목 : [eBook Code] Fundamentals of Computational Intelligence (eBook Code, 1st) (Neural Networks, Fuzzy Systems, and Evolutionary Computation)
· 분류 : 외국도서 > 기술공학 > 기술공학 > 전자공학 > 일반
· ISBN : 9781119214359
· 쪽수 : 378쪽
· 출판일 : 2016-07-12

목차

Acknowledgments xi

1. Introduction to Computational Intelligence 1

1.1 Welcome to Computational Intelligence 1

1.2 What Makes This Book Special 1

1.3 What This Book Covers 2

1.4 How to Use This Book 2

1.5 Final Thoughts Before You Get Started 3

PART I NEURAL NETWORKS 5

2. Introduction and Single-Layer Neural Networks 7

2.1 Short History of Neural Networks 9

2.2 Rosenblatt’s Neuron 10

2.3 Perceptron Training Algorithm 13

2.4 The Perceptron Convergence Theorem 23

2.5 Computer Experiment Using Perceptrons 25

2.6 Activation Functions 28

Exercises 30

3. Multilayer Neural Networks and Backpropagation 35

3.1 Universal Approximation Theory 35

3.2 The Backpropagation Training Algorithm 37

3.3 Batch Learning and Online Learning 45

3.4 Cross-Validation and Generalization 47

3.5 Computer Experiment Using Backpropagation 53

Exercises 56

4. Radial-Basis Function Networks 61

4.1 Radial-Basis Functions 61

4.2 The Interpolation Problem 62

4.3 Training Algorithms For Radial-Basis Function Networks 64

4.4 Universal Approximation 69

4.5 Kernel Regression 70

Exercises 75

5. Recurrent Neural Networks 77

5.1 The Hopfield Network 77

5.2 The Grossberg Network 81

5.3 Cellular Neural Networks 88

5.4 Neurodynamics and Optimization 91

5.5 Stability Analysis of Recurrent Neural Networks 93

Exercises 99

PART II FUZZY SET THEORY AND FUZZY LOGIC 101

6. Basic Fuzzy Set Theory 103

6.1 Introduction 103

6.2 A Brief History 107

6.3 Fuzzy Membership Functions and Operators 108

6.4 Alpha-Cuts, The Decomposition Theorem, and The Extension Principle 117

6.5 Compensatory Operators 120

6.6 Conclusions 124

Exercises 124

7. Fuzzy Relations and Fuzzy Logic Inference 127

7.1 Introduction 127

7.2 Fuzzy Relations and Propositions 128

7.3 Fuzzy Logic Inference 131

7.4 Fuzzy Logic For Real-Valued Inputs 135

7.5 Where Do The Rules Come From? 138

7.6 Chapter Summary 142

Exercises 143

8. Fuzzy Clustering and Classification 147

8.1 Introduction to Fuzzy Clustering 147

8.2 Fuzzy c-Means 155

8.3 An Extension of The Fuzzy c-Means 167

8.4 Possibilistic c-Means 169

8.5 Fuzzy Classifiers: Fuzzy k-Nearest Neighbors 174

8.6 Chapter Summary 179

Exercises 180

9. Fuzzy Measures and Fuzzy Integrals 183

9.1 Fuzzy Measures 183

9.2 Fuzzy Integrals 188

9.3 Training The Fuzzy Integrals 191

9.4 Summary and Final Thoughts 203

Exercises 203

PART III EVOLUTIONARY COMPUTATION 207

10. Evolutionary Computation 209

10.1 Basic Ideas and Fundamentals 209

10.2 Evolutionary Algorithms: Generate and Test 216

10.3 Representation, Search, and Selection Operators 221

10.4 Major Research and Application Areas 223

10.5 Summary 225

Exercises 225

11. Evolutionary Optimization 227

11.1 Global Numerical Optimization 229

11.2 Combinatorial Optimization 233

11.3 Some Mathematical Considerations 238

11.4 Constraint Handling 255

11.5 Self-Adaptation 258

11.6 Summary 264

Exercises 265

12. Evolutionary Learning and Problem Solving 269

12.1 Evolving Parameters of A Regression Equation 270

12.2 Evolving The Structure and Parameters of Input–Output Systems 274

12.3 Evolving Clusters 292

12.4 Evolutionary Classification Models 298

12.5 Evolutionary Control Systems 307

12.6 Evolutionary Games 314

12.7 Summary 320

Exercises 321

13. Collective Intelligence and Other Extensions of Evolutionary Computation 323

13.1 Particle Swarm Optimization 323

13.2 Differential Evolution 326

13.3 Ant Colony Optimization 329

13.4 Evolvable Hardware 331

13.5 Interactive Evolutionary Computation 333

13.6 Multicriteria Evolutionary Optimization 335

13.7 Summary 340

Exercises 340

References 343

Index 361

저자소개

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책