logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

[eBook Code] High Speed Off-Road Vehicles

[eBook Code] High Speed Off-Road Vehicles (eBook Code, 1st)

(Suspensions, Tracks, Wheels and Dynamics)

Bruce Maclaurin (지은이)
  |  
Wiley
2018-06-20
  |  
204,260원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
알라딘 163,400원 -20% 0원 0원 163,400원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
로딩중

e-Book

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

해외직구

책 이미지

[eBook Code] High Speed Off-Road Vehicles

책 정보

· 제목 : [eBook Code] High Speed Off-Road Vehicles (eBook Code, 1st) (Suspensions, Tracks, Wheels and Dynamics)
· 분류 : 외국도서 > 기술공학 > 기술공학 > 기계공학
· ISBN : 9781119258810
· 쪽수 : 272쪽

목차

Series Preface xiii

Acknowledgements xv

Introduction xvii

1 Tracked Vehicle Running Gear and Suspension Systems 1

1.1 General Arrangement 1

1.2 Transverse Torsion Bars 2

1.3 Coil Springs 6

1.4 Hydrogas Suspensions 8

1.4.1 Challenger MBT Hydrogas Unit 8

1.4.2 Measured Characteristics of a Challenger Unit 9

1.4.2.1 Spring Characteristics 9

1.4.2.2 Damper Characteristic 11

1.4.2.3 Differential Pressure Across the Damper Valve 11

1.4.2.4 Force/Displacement Loop 11

1.4.2.5 Flow Rig 12

1.4.2.6 Suspension Damping of a Multi?]Wheeled Vehicle 13

1.4.3 Temperature Effects 13

1.4.3.1 Two?]Stage Units 15

1.4.3.2 Counter?]Spring Units 17

1.4.4 Other Types of Hydrogas Suspension 18

1.4.4.1 Twin?]Cylinder Units 18

1.4.4.2 In?]Arm Units 18

1.5 Dampers 20

1.5.1 Hydraulic Dampers 20

1.5.2 Friction Dampers 20

References 22

2 Vehicle Track Systems 23

2.1 Link Tracks 23

2.1.1 Single?]Pin Tracks 26

2.1.1.1 Dry?]Pin Tracks 26

2.1.1.2 Rubber?]Bushed Tracks 27

2.1.2 Double?]Pin Tracks 28

2.1.3 Rubber Track Pads, Road Wheels and Track Tensioners 31

2.1.3.1 Rubber Track Pads 31

2.1.3.2 Road Wheels 32

2.1.3.3 Track Tensioners 33

2.1.4 Track Loadings 33

2.1.4.1 Centrifugal Tension 34

2.1.4.2 Final?]Drive Torque Measurements 34

2.1.4.3 Lateral Horn Load 35

2.1.5 Rolling Resistance: Analytical Methods 35

2.1.5.1 On a Metal Wheel Path 35

2.1.5.2 On a Rubber Wheel Path 36

2.1.6 Rolling Resistance: Experimental Measurements 37

2.1.6.1 Chieftain 38

2.1.6.2 FV 432 39

2.1.6.3 Scorpion and Spartan 40

2.1.6.4 Summary 42

2.1.7 Noise and Vibration 42

2.1.8 Approaches for Reducing Noise and Vibration 43

2.1.8.1 Finite Element Analysis and Experimental Sprockets 43

2.1.8.2 Fully Decoupled Running Gear 44

2.1.8.3 Flexible Rubber Tracks 44

2.1.9 Reducing Noise and Vibration 44

2.1.9.1 Stage (a): Establishing the Principal Noise Sources 45

2.1.9.2 Stage (b): Design and Production of the Resilient Mountings 46

2.1.9.3 Stage (c): Test Results with the Resilient Mountings 47

2.2 Flexible Tracks 48

2.2.1 Earlier Flexible Tracks 49

2.2.2 Contemporary Flexible Tracks 50

2.2.3 ‘Proof?]of?]Principle’ Flexible Tracks for a Spartan APC 51

2.2.3.1 Mark 1 Tracks 53

2.2.3.2 Mark 2 Tracks 54

2.2.3.3 Mark 3 Tracks 55

2.2.3.4 Durability Trials 57

2.2.4 Later Developments 57

References 58

3 Tracked Vehicle Suspension Performance: Modelling and Testing 59

3.1 Human Response to Whole?]Body Vibration (WBV) and Shock 59

3.1.1 BS 6841:1987 and ISO 2631?]1 (1997) 59

3.1.2 Further Standards Relating to WBV 61

3.1.2.1 Absorbed Power 61

3.1.2.2 The European Physical Agents (Vibration) Directive 2002/44/EC 64

3.1.2.3 ISO 2631?]5 (2004) 64

3.2 Terrain Profiles 64

3.2.1 Characterisation 64

3.2.2 DERA Suspension Performance Test Courses 65

3.2.3 Response of Multi?]Wheel Vehicles 66

3.2.4 Quarter?]Car Model 68

3.2.5 Computer Modelling 71

3.2.5.1 Parameter Specification 73

3.2.5.2 Assumptions 74

3.5.2.3 Examples of Use of the Model 74

3.5.2.4 Comparison with Trials Data 75

3.5.2.5 Upgrading the Suspension Performance of the Scorpion Family of Vehicles 76

3.2.6 Ride Performance Trials of a Challenger Suspension Test Vehicle 76

3.2.7 Pitch Response to Braking and Accelerating 79

3.2.7.1 Compensating Idler 83

3.2.8 Sprung Idler Test Vehicle (SITV) 85

References 88

4 Controllable Suspensions 89

4.1 Height and Attitude Control 89

4.1.1 Tracked Vehicles 89

4.1.2 Wheeled Vehicles 91

4.2 Actively Controlled Damping (Semi?]Active Suspensions) 91

4.2.1 Adaptive Damping 91

4.3 Active Suspension Systems 91

4.4 DERA Active Suspension Test Vehicles 93

4.4.1 Narrow?]Bandwidth Systems 93

4.4.1.1 Wheeled Vehicle 95

4.4.1.2 Tracked Vehicle 97

4.4.1.3 Laboratory Test Rig 97

4.4.2 Broad?]Bandwidth System 97

4.5 Conclusions 100

References 101

5 Wheeled Vehicle Drivelines and Suspensions 103

5.1 Unarmoured Vehicles 103

5.1.1 Leyland DAF DROPS 8×6 Logistic Load Carrier 103

5.1.2 MAN SX 8×8 High?]Mobility Load Carrier 105

5.1.3 Pinzgauer 4×4 and 6×6 Light Trucks 105

5.1.4 Range Rover 106

5.1.5 Alvis Stalwart 107

5.1.6 Caterpillar Mining/Dump Truck 108

5.1.7 Euclid (Later Hitachi) Mining/Dump Trucks 110

5.2 Armoured Vehicles 112

5.2.1 H?]Drive 112

5.2.2 I?]Drive 113

5.3 Interconnected Suspensions 116

5.3.1 Methods of Interconnection 116

References 122

6 Wheeled Vehicle Suspension Performance 123

6.1 Quarter?]Car Model 123

6.2 Wheelbase Filter 126

6.3 DROPS Truck Ride Measurements 127

Reference 132

7 Steering Performance of Tracked and Wheeled Vehicles 133

7.1 Tracked Vehicles 133

7.1.1 Skid Steering Mechanisms 133

7.1.2 Skid Steering Models 136

7.1.3 The Magic Formula 139

7.1.4 Deriving the Magic Formula Parameters for the Track 140

7.1.5 Steering Performance Model 144

7.1.6 Results from the Model 146

7.1.6.1 Driver Control Arrangements 146

7.1.6.2 Pivot Turn 146

7.1.6.3 Effect of Radius of Turn on Slewing Moment 147

7.1.6.4 Driving on a 15 m Radius Turn at Varying Speed to Show the Effects of Track Tension and a Suspension System 148

7.1.6.5 Driving on a 15 m Radius Turn at Varying Speeds with New and Worn Pads and on a Low?]Friction Surface 150

7.1.6.6 Driving at 15 m s–1 on Turns of Varying Radii 152

7.1.6.7 Effect of the Centre of Gravity (CG) Position 154

7.1.6.8 Model Validation 156

7.2 Comparing Skid and Ackermann Steered Wheeled Vehicles 156

7.2.1 Tyre Force–Slip Data 157

7.2.2 Choice of Tyre Model 158

7.2.2.1 The Skid Steered Vehicle: Vehicle Model 159

7.2.3 Results from the Model 159

7.2.3.1 Neutral Turn 159

7.2.3.2 Variation of Slewing Moment with Radius of Turn 161

7.2.3.3 Cornering on 15 m and 30 m Radius Turns at Different Speeds 162

7.2.4 Ackermann Steered Vehicle Model 163

7.2.5 Model Results 163

7.2.5.1 Steering Performance 163

7.2.5.2 Power Requirements 165

7.2.5.3 Tyre Wear 165

7.2.6 Torque Vectoring 166

7.2.6.1 Individual Wheel Motor Control 169

7.2.6.2 Articulated Vehicles 169

Appendix A: Equations of Motion 170

Appendix B: Equations of Motion 173

References 175

8 Soft?]Soil Performance of Wheeled and Tracked Vehicles 177

8.1 Basic Requirements 177

8.1.1 Soil 177

8.1.2 Basic Definitions 178

8.1.3 Soil–Vehicle Models 179

8.2 Models for Soft Cohesive Soils 180

8.2.1 Vehicle Cone Index (VCI) Model 180

8.2.1.1 Mobility Index for Tracked Vehicles 181

8.2.1.2 Mobility Index for Wheeled Vehicles 181

8.2.2 WES Mobility Number Model 182

8.2.3 Mean Maximum Pressure (MMP) 182

8.2.4 Vehicle Limiting Cone Index (VLCI) 183

8.2.4.1 Tyres 184

8.2.4.2 Tracks 187

8.3 Models for Dry Frictional Soils 189

8.3.1 WES Mobility Number for Wheeled Vehicles 189

8.3.2 DERA Trials 190

8.3.3 Tracked Vehicles 193

8.4 Space Efficiency of Running Gear Systems for Armoured Vehicles 194

8.5 Tractive Force–Slip Relationship for Tyres in Soft Cohesive Soils 197

8.5.1 Describing Force–Slip Characteristics 197

8.5.1.1 Rectangular Hyperbolae 197

8.5.1.2 Exponentials 197

8.5.2 The Magic Formula 198

8.5.3 Development of the Modified Magic Formula 199

References 202

9 Effect of Free, Locked and Limited?]Slip Differentials on Traction and Steering Performance 203

9.1 Types of Lockable and Limited?]Slip Differentials 203

9.1.1 Lockable Differentials 203

9.1.2 Using the Braking System 204

9.1.3 Velocity?]Dependent Limited?]Slip Differentials 204

9.1.4 Frictional Limited?]Slip Differentials 205

9.2 Relationships for Frictional Limited?]Slip Differentials 206

9.3 Traction Performance 209

9.3.1 Traction Model 209

9.3.2 Model Results 210

9.3.2.1 Effect of Weight Transfer Across an Axle 210

9.3.2.2 Different Soil Strengths Under the Tyres 212

9.3.2.3 On a Split μ Surface 214

9.4 Steering Performance on a Road Surface 214

9.4.1 Steering Performance Model 214

9.4.2 Model Results 214

Reference 216

10 Articulated Vehicles 217

10.1 Articulated Tracked Vehicles 217

10.1.1 Traction Forces with Skid and Articulated Steering 221

10.2 Articulated Wheeled Vehicles 222

10.2.1 Steering Behaviour with Ackermann, Skid and Articulated Steering 225

10.2.1.1 Hard Surfaces 225

10.2.1.2 Soft Soils 225

References 226

11 Vehicle Rollover Behaviour 227

11.1 Basic Considerations 227

11.2 Methods to Reduce the Likelihood of Rollover 229

11.2.1 Warning Systems 229

11.2.2 Electronic Stability Programmes 230

11.2.3 Active Anti?]Roll Bars 230

11.3 Truck Rollover: A Case Study 230

11.3.1 Calculating the Rollover Angle 231

References 233

Notation 235

Abbreviations 243

Bibliography 245

Index 247

저자소개

Bruce Maclaurin (지은이)    정보 더보기
펼치기
이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책