logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

[eBook Code] Computational Color Science

[eBook Code] Computational Color Science (eBook Code, 1st)

(Variational Retinex-like Methods)

Edoardo Provenzi (지은이)
Wiley-ISTE
252,680원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
202,140원 -20% 0원
0원
202,140원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

[eBook Code] Computational Color Science
eBook 미리보기

책 정보

· 제목 : [eBook Code] Computational Color Science (eBook Code, 1st) (Variational Retinex-like Methods)
· 분류 : 외국도서 > 기술공학 > 기술공학 > 신호/신호처리
· ISBN : 9781119407430
· 쪽수 : 144쪽
· 출판일 : 2017-03-13

목차

Preface ix

Chapter 1. Rudiments of Human Visual System (HVS) Features 1

1.1. The retina 1

1.1.1. Photoreceptors: rods and cones 2

1.2. Adaptation and photo-electrical response of receptors 4

1.3. Spatial locality of vision 5

1.4. Local contrast enhancement 6

1.5. Physical vs. perceived light intensity contrast: Weber- Fechner’s law 9

Chapter 2. Computational Color Constancy Algorithms 13

2.1. The dichromatic and Lambertian image formation models 14

2.2. Classical hypotheses for illuminant and reflectance estimation 17

2.2.1. White-patch assumption and related models 18

2.2.2. Gray-world assumption and related models 20

2.2.3. Shades of gray and multi-scale max-RGB assumptions to mix white-patch and gray-world hypotheses 22

2.2.4. Gray-edge assumption and related models 24

2.2.5. Multi-scale n-th order shades of gray-edge assumption: a general hypothesis 26

Chapter 3. Retinex-like Algorithms for Color Image Processing 29

3.1. Mathematical description of the original ratio-threshold-reset Retinex algorithm 30

3.2. Analysis of the ratio-reset Retinex formula: the limit ε → 0 33

3.2.1. Retinex: “a melody that everyone plays differently” 37

3.3. From paths to pixel sprays: RSR 41

3.3.1. LRSR and SMRSR 43

3.4. A psychophysical method to measure (achromatic) induction 45

3.5. Automatic Color Equalization: ACE 50

3.6. RACE: a model with mixed features between RSR and ACE 52

3.6.1. Regularization of RACE formula: attachment to original image 54

3.7. An alternative fusion between RSR and ACE: STRESS 56

Chapter 4. Variational Formulation of Histogram Equalization 59

4.1. The Caselles–Sapiro model 59

4.2. Interpretation of Caselles–Sapiro’s functional for histogram equalization 65

4.3. Application of histogram equalization techniques to color images 67

Chapter 5. Perceptually-inspired Variational Models for Color Enhancement in the RGB Space 69

5.1. Beyond the Caselles–Sapiro model: modification of the histogram equalization functional to approach visual properties 70

5.1.1. A contrast term coherent with HVS properties 70

5.1.2. Entropic adjustment term 73

5.2. Minimization of perceptual functionals 75

5.2.1. Stability of the iterative semi-implicit gradient descent scheme 80

5.2.2. A general strategy for the reduction of computational complexity 81

5.2.3. Results 83

5.3. Embedding existing perceptually inspired color correction models in the variational framework 85

5.3.1. Alternative variational and EDP formalizations of Retinex-like algorithms 89

5.4. Variational interpretation of the Rudd-Zemach model of achromatic induction 92

5.5. Perceptual enhancement in the wavelet domain 95

5.5.1. Adjustment to the average value in the wavelet domain 98

5.5.2. Local contrast enhancement in the wavelet domain 99

5.6. High-dynamic-range (HDR) imaging 101

5.6.1. A two-stage tone mapping 105

Appendix 111

Bibliography 117

Index 125

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책