logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

일간
|
주간
|
월간

실시간 검색어

검색가능 서점

도서목록 제공

Machine Learning for iOS Developers

Machine Learning for iOS Developers (Paperback)

아비섹 미쉬라 (지은이)
John Wiley & Sons Inc
87,500원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
56,870원 -35% 0원
570원
56,300원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Machine Learning for iOS Developers
eBook 미리보기

책 정보

· 제목 : Machine Learning for iOS Developers (Paperback) 
· 분류 : 외국도서 > 컴퓨터 > 기계이론
· ISBN : 9781119602873
· 쪽수 : 336쪽
· 출판일 : 2020-03-04

목차

Introduction xix

Part 1 Fundamentals of Machine Learning 1

Chapter 1 Introduction to Machine Learning 3

What is Machine Learning? 4

Tools Commonly Used by Data Scientists 4

Common Terminology 5

Real-World Applications of Machine Learning 7

Types of Machine Learning Systems 8

Supervised Learning 9

Unsupervised Learning 10

Semisupervised Learning 11

Reinforcement Learning 11

Batch Learning 12

Incremental Learning 12

Instance-Based Learning 13

Model-Based Learning 13

Common Machine Learning Algorithms 13

Linear Regression 14

Support Vector Machines 15

Logistic Regression 19

Decision Trees 21

Artificial Neural Networks 23

Sources of Machine Learning Datasets 24

Scikit-learn Datasets 24

AWS Public Datasets 27

Kaggle.com Datasets 27

UCI Machine Learning Repository 27

Summary 28

Chapter 2 The Machine-Learning Approach 29

The Traditional Rule-Based Approach 29

A Machine-Learning System 33

Picking Input Features 34

Preparing the Training and Test Set 39

Picking a Machine-Learning Algorithm 40

Evaluating Model Performance 41

The Machine-Learning Process 44

Data Collection and Preprocessing 44

Preparation of Training, Test, and Validation Datasets 44

Model Building 45

Model Evaluation 45

Model Tuning 45

Model Deployment 46

Summary 46

Chapter 3 Data Exploration and Preprocessing 47

Data Preprocessing Techniques 47

Obtaining an Overview of the Data 47

Handling Missing Values 57

Creating New Features 60

Transforming Numeric Features 62

One-Hot Encoding Categorical Features 64

Selecting Training Features 65

Correlation 65

Principal Component Analysis 68

Recursive Feature Elimination 70

Summary 71

Chapter 4 Implementing Machine Learning on Mobile Apps 73

Device-Based vs Server-Based Approaches 73

Apple’s Machine Learning Frameworks and Tools 75

Task-Level Frameworks 75

Model-Level Frameworks 76

Format Converters 76

Transfer Learning Tools 77

Third-Party Machine-Learning Frameworks and Tools 78

Summary 79

Part 2 Machine Learning with CoreML, CreateML, and TuriCreate 81

Chapter 5 Object Detection Using Pre- trained Models 83

What is Object Detection? 83

A Brief Introduction to Artificial Neural Networks 86

Downloading the ResNet50 Model 92

Creating the iOS Project 92

Creating the User Interface 95

Updating Privacy Settings 100

Using the Resnet50 Model in the iOS Project 100

Summary 109

Chapter 6 Creating an Image Classifier with the Create ML App 111

Introduction to the Create ML App 112

Creating the Image Classification Model with the Create ML App 113

Creating the iOS Project 117

Creating the User Interface 118

Updating Privacy Settings 122

Using the Core ML Model in the iOS Project 123

Summary 132

Chapter 7 Creating a Tabular Classifier with Create ML 135

Preparing the Dataset for the Create ML App 135

Creating the Tabular Classification Model with the Create ML App 143

Creating the iOS Project 147

Creating the User Interface 148

Using the Classification Model in the iOS Project 156

Testing the App 172

Summary 173

Chapter 8 Creating a Decision Tree Classifier r 175

Decision Tree Recap 175

Examining the Dataset 176

Creating Training and Test Datasets 180

Creating the Decision Tree Classification Model with Scikit-learn 181

Using Core ML Tools to Convert the Scikit-learn Model to the Core ML Format 186

Creating the iOS Project 187

Creating the User Interface 188

Using the Scikit-learn Decision Tree Classifier Model in the iOS Project 193

Testing the App 201

Summary 202

Chapter 9 Creating a Logistic Regression Model Using Scikit-learn and Core ML 203

Examining the Dataset 203

Creating a Training and Test Dataset 208

Creating the Logistic Regression Model with Scikit-learn 210

Using Core ML Tools to Convert the Scikit-learn Model to the Core ML Format 216

Creating the iOS Project 218

Creating the User Interface 219

Using the Scikit-learn Model in the iOS Project 225

Testing the App 232

Summary 233

Chapter 10 Building a Deep Convolutional Neural Network with Keras 235

Introduction to the Inception Family of Deep Convolutional Neural Networks 236

GoogLeNet (aka Inception-v1) 236

Inception-v2 and Inception-v3 238

Inception-v4 and Inception-ResNet 239

A Brief Introduction to Keras 244

Implementing Inception-v4 with the Keras Functional API 246

Training the Inception-v4 Model 259

Exporting the Keras Inception-v4 Model to the Core ML Format 269

Creating the iOS Project 270

Creating the User Interface 271

Updating Privacy Settings 276

Using the Inception-v4 Model in the iOS Project 277

Summary 286

Appendix A Anaconda and Jupyter Notebook Setup 287

Installing the Anaconda Distribution 287

Creating a Conda Python Environment 288

Installing Python Packages 291

Installing Jupyter Notebook 293

Summary 296

Appendix B Introduction to NumPy and Pandas 297

NumPy 297

Creating NumPy Arrays 297

Modifying Arrays 301

Indexing and Slicing 304

Pandas 305

Creating Series and Dataframes 305

Getting Dataframe Information 307

Selecting Data 311

Summary 313

Index 315

저자소개

아비섹 미쉬라 (지은이)    정보 더보기
19년 이상 IT 업계에서 활발하게 활동해왔으며 프로그래밍 언어, 엔터프라이즈 시스템, 서비스 아키텍처, 플랫폼 등 다양한 분야의 전문가다. 영국 런던대학교에서 컴퓨터 과학 석사 학위를 받았으며 현재는 런던의 로이드 뱅킹 그룹(Lloyds Banking Group)에서 보안 및 사기 방지 솔루션 아키텍트 컨설턴트로 일하고 있다. 『Amazon Web Services for Mobile Developers』(Sybex, 2017)를 포함한 여러 책의 저자이기도 하다.
펼치기
이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책