logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

[eBook Code] Viscoelastic Modeling for Structural Analysis

[eBook Code] Viscoelastic Modeling for Structural Analysis (eBook Code, 1st)

Jean Salençon (지은이)
Wiley-ISTE
249,130원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
199,300원 -20% 0원
0원
199,300원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

[eBook Code] Viscoelastic Modeling for Structural Analysis
eBook 미리보기

책 정보

· 제목 : [eBook Code] Viscoelastic Modeling for Structural Analysis (eBook Code, 1st) 
· ISBN : 9781119618331
· 쪽수 : 208쪽
· 출판일 : 2019-04-26

목차

Preface ix

List of Notations xiii

Chapter 1. One-dimensional Viscoelastic Modeling 1

1.1. Experimental observations 1

1.2. Fundamental uniaxial tests 2

1.2.1. Creep test, creep function 2

1.2.2. Stress relaxation test, relaxation function 5

1.2.3. First comments 7

1.2.4. Recovery 8

1.2.5. Stress fading 9

1.3. Functional description 10

1.4. Aging 11

1.4.1. Aging phenomenon 11

1.4.2. Non-aging materials 12

1.5. Linear behavior 14

1.5.1. Superposition principle: Boltzmannian materials 14

1.5.2. Linear elasticity 15

1.6. Linear viscoelastic material 15

1.6.1. Instantaneous behavior 16

1.6.2. Creep and relaxation functions 16

1.6.3. Recovery and stress fading 18

1.6.4. Instantaneous behavior 19

1.6.5. Validation of the linearity hypothesis: An example 19

1.7. Linear viscoelastic constitutive equation 20

1.7.1. Arbitrary stress history 20

1.7.2. Arbitrary deformation history 23

1.7.3. Linear elastic material 24

1.7.4. Boltzmann’s formulas, integral operator 24

1.7.5. Comments 26

1.8. Non-aging linear viscoelastic constitutive equation 27

1.8.1. Creep and relaxation functions 27

1.8.2. Boltzmann’s formulas 28

1.8.3. Recovery and stress fading 30

1.8.4. Operational calculus 30

1.9. One-dimensional linear viscoelastic behavior 33

1.9.1. Uniaxial viewpoint and one-dimensional modeling 33

1.9.2. Structural elements 36

1.10. Harmonic loading process 39

1.10.1. The loading process 39

1.10.2. Asymptotic harmonic regime 40

1.10.3. Complex modulus 41

1.10.4. Loss angle, specific loss 43

Chapter 2. Rheological Models 45

2.1. Rheological models 45

2.2. Basic elements 45

2.2.1. Linear elastic element 45

2.2.2. Linear viscous element 46

2.3. Classical models 47

2.3.1. Maxwell model 47

2.3.2. Kelvin model 49

2.3.3. The standard linear solid 51

2.4. Generalized Maxwell and Kelvin models 56

2.4.1. Generalized Maxwell model 57

2.4.2. Generalized Kelvin model 58

2.4.3. Equivalence 59

2.4.4. Continuous spectra 60

Chapter 3. Typical Case Studies 63

3.1. Presentation and general features 63

3.2. “Creep-type” problems 64

3.2.1. Homogeneous cantilever beam subjected to a uniformly distributed load 64

3.2.2. Homogeneous cantilever beam subjected to a concentrated load 68

3.2.3. Homogeneous statically indeterminate beam 70

3.2.4. A statically indeterminate system 72

3.3. Prestressing of viscoelastic systems or structures 75

3.3.1. Prestressed cantilever beam 75

3.3.2. Prestressed hyperstatic system 79

3.3.3. Prestressed hyperstatic arc 80

3.3.4. The example of a rheological model 84

3.3.5. Practical applications 88

3.4. A complex loading process 93

3.4.1. A practical problem 93

3.4.2. Mathematical treatment 95

3.4.3. Comments 97

3.5. Heterogeneous viscoelastic structures 98

Chapter 4. Three-dimensional Linear Viscoelastic Modeling 103

4.1. Multidimensional approach 103

4.2. Fundamental experiments 104

4.2.1. The three-dimensional continuum framework 104

4.2.2. General definition of the creep and relaxation tests 105

4.2.3. The linearity hypothesis. 105

4.2.4. Tensorial creep and relaxation functions 106

4.2.5. Instantaneous elasticity 107

4.3. Boltzmann’s formulas 108

4.3.1. Integral operator 108

4.3.2. Important identities 109

4.4. Isotropic linear viscoelastic material 110

4.4.1. Material symmetries, principle of material symmetries 110

4.4.2. Isotropic linear viscoelastic material: Creep test 111

4.4.3. Isotropic linear viscoelastic material: Relaxation test 113

4.4.4. Boltzmann’s formulas 114

4.4.5. Uniaxial tension relaxation test 115

4.4.6. Constant Poisson’s ratio 118

4.5. Non-aging linear viscoelastic material 120

4.5.1. Boltzmann’s formulas 120

4.5.2. Operational calculus 121

4.5.3. Isotropic material 122

Chapter 5. Quasi-static Linear Viscoelastic Processes 125

5.1. Quasi-static linear viscoelastic processes 125

5.1.1. Isothermal quasi-static processes 125

5.1.2. Isothermal quasi-static linear viscoelastic processes 128

5.1.3. Superposition principle 129

5.1.4. Loading parameters, kinematic parameters 129

5.2. Solution to the linear viscoelastic quasi-static evolution problem 131

5.2.1. Statically admissible stress histories, kinematically admissible displacement histories 131

5.2.2. Solution methods 132

5.3. Homogeneous isotropic material with constant Poisson’s ratio 133

5.3.1. Creep-type problems, creep-type evolutions 134

5.3.2. Relaxation-type problems, relaxation-type evolutions 135

5.3.3. Mixed data problems 137

5.3.4. Comments 139

5.4. Non-aging linear viscoelastic material 140

5.4.1. Correspondence principle 140

5.4.2. Comments 142

Chapter 6. Some Practical Problems 143

6.1. Presentation 143

6.2. Uniaxial tension–compression of a cylindrical rod 143

6.2.1. Statement of the problem 143

6.2.2. Solution 145

6.3. Bending of a cylindrical rod 148

6.3.1. Statement of the problem 148

6.3.2. Solution 149

6.4. Twisting of a cylindrical rod 152

6.4.1. Preliminary comments 152

6.4.2. Statement of the problem 153

6.4.3. Solution 154

6.4.4. Comment 157

6.5. Convergence of a spherical cavity 158

6.5.1. Statement of the problem 158

6.5.2. Solution 160

Appendix 163

References 167

Index 175

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책