logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Deformation and Fracture Mechanics of Engineering Materials

Deformation and Fracture Mechanics of Engineering Materials (Paperback, 6th)

Richard W. Hertzberg, Richard P. Vinci, Jason L. Hertzberg (지은이)
  |  
Wiley
2020-07-08
  |  
58,000원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
알라딘 58,000원 -0% 0원 1,740원 56,260원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
로딩중

e-Book

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

해외직구

책 이미지

Deformation and Fracture Mechanics of Engineering Materials

책 정보

· 제목 : Deformation and Fracture Mechanics of Engineering Materials (Paperback, 6th) 
· 분류 : 외국도서 > 기술공학 > 기술공학 > 나노테크놀리지/MEMS
· ISBN : 9781119670575
· 쪽수 : 800쪽

목차

Foreword xvii

Preface to the Sixth Edition xix

The Comet and Titanic Disasters: Fiction Foreshadows Truth ! xix

Additional References for Video Entitled “The Comet and Titanic Disasters: Fiction Foreshadows Truth !!” xix

Stress Intensity Factor Formulations xx

Elliptical and Penny-Shaped Stress Intensity Factors xx

Multiplicity of Y-calibration Factors xx

Design Concepts xx

Estimation of Crack Tip Plastic Zone Size and Shear Lip Development xx

Compact-Tension Fracture Toughness Test xx

Fatigue Fracture xxi

Extensive Folder of Powerpoint Slides xxii

Chapter Thirteen: Final Thoughts xxii

Dedication xxii

Acknowledgments xxii

About the Authors xxv

Section One Recoverable and Nonrecoverable Deformation 1

Chapter 1 Elastic Response of Solids 3

1.1 Mechanical Testing 3

1.2 Definitions of Stress and Strain 4

1.3 Stress–Strain Curves for Uniaxial Loading 8

1.3.1 Survey of Tensile Test Curves 8

1.3.2 Uniaxial Linear Elastic Response 9

1.3.3 Young’s Modulus and Polymer Structure 13

1.3.3.1 Thermoplastic Behavior 13

1.3.3.2 Rigid Thermosets 14

1.3.3.3 Rubber Elasticity 15

1.3.4 Compression Testing 17

1.3.5 Failure by Elastic Buckling 17

1.3.6 Resilience and Strain Energy Density 19

1.3.7 Definitions of Strength 19

1.3.8 Toughness 22

1.4 Nonaxial Testing 23

1.4.1 Bend Testing 23

1.4.2 Shear and Torsion Testing 26

1.5 Multiaxial Linear Elastic Response 27

1.5.1 Additional Isotropic Elastic Constants 27

1.5.2 Multiaxial Loading 28

1.5.2.1 Thin-Walled Pressure Vessels 30

1.5.2.2 Special Cases of Multiaxial Loading 32

1.5.3 Instrumented Indentation 33

1.6 Elastic Anisotropy 34

1.6.1 Stiffness and Compliance Matrices 34

1.6.1.1 Symmetry Classes 36

1.6.1.2 Loading Along an Arbitrary Axis 37

1.6.2 Composite Materials 40

1.6.3 Isostrain Analysis 41

1.6.4 Isostress Analysis 43

1.6.5 Aligned Short Fibers 44

1.6.6 Strength of Composites 47

1.6.6.1 Effects of Matrix Behavior 47

1.6.6.2 Effects of Fiber Orientation 48

1.7 Thermal Stresses and Thermal Shock-Induced Failure 50

1.7.1 Upper Bound Thermal Stress 50

1.7.2 Cooling Rate and Thermal Stress 54

References 55

Further Readings 56

Problems 56

Review 56

Practice 57

Design 59

Extend 60

Chapter 2 Yielding and Plastic Flow 63

2.1 Dislocations in Metals and Ceramics 63

2.1.1 Strength of a Perfect Crystal 63

2.1.2 The Need for Lattice Imperfections: Dislocations 65

2.1.3 Observation of Dislocations 67

2.1.4 Lattice Resistance to Dislocation Movement: The Peierls Stress 69

2.1.4.1 Peierls Stress Temperature Sensitivity 70

2.1.4.2 Effect of Dislocation Orientation on Peierls Stress 71

2.1.5 Characteristics of Dislocations 72

2.1.6 Elastic Properties of Dislocations 75

2.1.7 Partial Dislocations 78

2.1.7.1 Movement of Partial Dislocations 80

2.2 Slip 81

2.2.1 Crystallography of Slip 81

2.2.2 Geometry of Slip 84

2.2.3 Slip in Polycrystals 87

2.3 Yield Criteria for Metals and Ceramics 88

2.4 Post-Yield Plastic Deformation 90

2.4.1 Strain Hardening 90

2.4.2 Plastic Instability and Necking 93

2.4.2.1 Strain Distribution in a Tensile Specimen 94

2.4.2.2 Extent of Uniform Strain 95

2.4.2.3 True Stress Correction 95

2.4.2.4 Failure of the Necked Region 96

2.4.3 Upper Yield Point Behavior 99

2.4.4 Temperature and Strain-Rate Effects in Tension 100

2.5 Slip in Single Crystals and Textured Materials 102

2.5.1 Geometric Hardening and Softening 103

2.5.2 Crystallographic Textures (Preferred Orientations) 105

2.5.3 Plastic Anisotropy 108

2.6 Deformation Twinning 111

2.6.1 Comparison of Slip and Twinning Deformations 111

2.6.2 Heterogeneous Plastic Tensile Behavior 113

2.6.3 Stress Requirements for Twinning 113

2.6.4 Geometry of Twin Formation 114

2.6.5 Elongation Potential of Twin Deformation 116

2.6.6 Twin Shape 116

2.6.7 Twinning in HCP Crystals 117

2.6.8 Twinning in BCC and FCC Crystals 120

2.7 Plasticity in Polymers 120

2.7.1 Polymer Structure: General Remarks 120

2.7.1.1 Side Groups and Chain Mobility 121

2.7.1.2 Side Groups and Crystallinity 123

2.7.1.3 Morphology of Amorphous and Crystalline Polymers 124

2.7.1.4 Polymer Additions 127

2.7.2 Plasticity Mechanisms 128

2.7.2.1 Amorphous Polymers 128

2.7.2.2 Semi-crystalline Polymers 130

2.7.3 Macroscopic Response of Ductile Polymers 131

2.7.4 Yield Criteria 133

References 136

Problems 139

Review 139

Practice 140

Design 141

Extend 141

Chapter 3 Controlling Strength 143

3.1 Strengthening: A Definition 143

3.2 Strengthening of Metals 143

3.2.1 Dislocation Multiplication 143

3.2.2 Dislocation–Dislocation Interactions 146

3.3 Strain (Work) Hardening 151

3.4 Boundary Strengthening 155

3.4.1 Strength of Nanocrystalline and Multilayer Metals 156

3.5 Solid Solution Strengthening 158

3.5.1 Yield-Point Phenomenon and Strain Aging 161

3.6 Precipitation Hardening 164

3.6.1 Microstructural Characteristics 164

3.6.2 Dislocation–Particle Interactions 167

3.7 Dispersion Strengthening 170

3.8 Strengthening of Steel Alloys by Multiple Mechanisms 172

3.9 Metal-Matrix Composite Strengthening 175

3.9.1 Whisker-Reinforced Composites 175

3.9.2 Laminated Composites 176

3.10 Strengthening of Polymers 177

3.11 Polymer-Matrix Composites 182

References 184

Further Reading 185

Problems 186

Review 186

Practice 186

Design 187

Extend 188

Chapter 4 Time-Dependent Deformation 189

4.1 Time-Dependent Mechanical Behavior of Solids 189

4.2 Creep of Crystalline Solids: An Overview 191

4.3 Temperature–Stress–Strain-Rate Relations 195

4.4 Deformation Mechanisms 202

4.5 Superplasticity 205

4.6 Deformation-Mechanism Maps 208

4.7 Parametric Relations: Extrapolation Procedures for Creep Rupture Data 215

4.8 Materials for Elevated Temperature Use 220

4.9 Viscoelastic Response of Polymers and the Role of Structure 227

4.9.1 Polymer Creep and Stress Relaxation 229

4.9.2 Mechanical Analogs 235

4.9.3 Dynamic Mechanical Testing and Energy-Damping Spectra 239

References 243

Problems 245

Review 245

Practice 246

Design 247

Extend 248

Section Two Fracture Mechanics of Engineering Materials 249

Chapter 5 Fracture: An Overview 251

5.1 Introduction 251

5.2 Theoretical Cohesive Strength 253

5.3 Defect Population in Solids 254

5.3.1 Statistical Nature of Fracture: Weibull Analysis 255

5.3.1.1 Effect of Size on the Statistical Nature of Fracture 258

5.4 The Stress-Concentration Factor 260

5.5 Notch Strengthening 264

5.6 External Variables Affecting Fracture 265

5.7 Characterizing the Fracture Process 266

5.8 Macroscopic Fracture Characteristics 269

5.8.1 Fractures of Metals 269

5.8.2 Fractures of Polymers 271

5.8.3 Fractures of Glasses and Ceramics 273

5.8.4 Fractures of Engineering Composites 277

5.9 Microscopic Fracture Mechanisms 278

5.9.1 Microscopic Fracture Mechanisms: Metals 279

5.9.2 Microscopic Fracture Mechanisms: Polymers 282

5.9.3 Microscopic Fracture Mechanisms: Glasses and Ceramics 287

5.9.4 Microscopic Fracture Mechanisms: Engineering Composites 289

5.9.5 Microscopic Fracture Mechanisms: Metal Creep Fracture 291

References 294

Problems 295

Review 295

Practice 296

Design 297

Extend 297

Chapter 6 Elements of Fracture Mechanics 299

6.1 Griffith Crack Theory 299

6.1.1 Verification of the Griffith Relation 301

6.1.2 Griffith Theory and Propagation-Controlled Thermal Fracture 301

6.1.3 Adapting the Griffith Theory to Ductile Materials 304

6.1.4 Energy Release Rate Analysis 305

6.2 Charpy Impact Fracture Testing 307

6.3 Related Polymer Fracture Test Methods 311

6.4 Limitations of the Transition Temperature Philosophy 312

6.5 Stress Analysis of Cracks 315

6.5.1 Multiplicity of Y Calibration Factors 323

6.5.2 The Role of K 326

FAILURE ANALYSIS CASE STUDY 6.1: Fracture Toughness of Manatee Bones in Impact 327

6.6 Design Philosophy 328

6.7 Relation Between Energy Rate and Stress Field Approaches 330

6.8 Crack-Tip Plastic-Zone Size Estimation 332

6.8.1 Dugdale Plastic Strip Model 335

6.9 Fracture-Mode Transition: Plane Stress Versus Plane Strain 336

FAILURE ANALYSIS CASE STUDY 6.2: Analysis of Crack Development during Structural Fatigue Test 339

6.10 Plane-Strain Fracture-Toughness Testing of Metals and Ceramics 341

6.11 Fracture Toughness of Engineering Alloys 344

6.11.1 Impact Energy—Fracture-Toughness Correlations 347

Rotor Forging 354

6.12 Plane-Stress Fracture-Toughness Testing 355

6.13 Toughness Determination from Crack-Opening Displacement Measurement 358

6.14 Fracture-Toughness Determination and Elastic-Plastic Analysis with the J Integral 360

6.14.1 Determination of JIC 362

6.15 Other Fracture Models 368

6.16 Fracture Mechanics and Adhesion Measurements 371

References 375

Further Readings 378

Problems 378

Review 378

Practice 379

Design 380

Extend 381

Chapter 7 Fracture Toughness 383

7.1 Some Useful Generalities 383

7.1.1 Toughness and Strength 383

7.1.2 Intrinsic Toughness 385

7.1.3 Extrinsic Toughening 387

7.2 Intrinsic Toughness of Metals and Alloys 389

7.2.1 Improved Alloy Cleanliness 389

7.2.1.1 Cleaning Up Ferrous Alloys 390

7.2.1.2 Cleaning Up Aluminum Alloys 394

7.2.2 Microstructural Refinement 398

7.3 Toughening of Metals and Alloys Through Microstructural Anisotropy 402

7.3.1 Mechanical Fibering 402

7.3.2 Internal Interfaces and Crack Growth 406

7.3.3 Fracture Toughness Anisotropy 410

7.4 Optimizing Toughness of Specific Alloy Systems 411

7.4.1 Ferrous Alloys 411

7.4.2 Nonferrous Alloys 414

7.5 Toughness of Ceramics, Glasses, and Their Composites 416

7.5.1 Ceramics and Ceramic-Matrix Composites 416

7.5.2 Glass 422

7.6 Toughness of Polymers and Polymer-Matrix Composites 426

7.6.1 Intrinsic Polymer Toughness 426

7.6.2 Particle-Toughened Polymers 427

7.6.3 Fiber-Reinforced Polymer Composites 432

7.7 Natural and Biomimetic Materials 434

7.7.1 Mollusk Shells 434

7.7.2 Bone 437

7.7.3 Tough Biomimetic Materials 438

7.8 Metallurgical Embrittlement of Ferrous Alloys 440

7.8.1 300 to 350 C or Tempered Martensite Embrittlement 441

7.8.2 Temper Embrittlement 442

7.8.3 Neutron-Irradiation Embrittlement 444

7.9 Additional Data 449

References 453

Problems 459

Review 459

Practice 460

Design 461

Extend 461

Chapter 8 Environment-Assisted Cracking 463

8.1 Embrittlement Models 465

8.1.1 Hydrogen Embrittlement Models 465

8.1.2 Stress Corrosion Cracking Models 468

8.1.2.1 SCC of Specific Material–Environment Systems 470

8.1.3 Liquid-Metal Embrittlement 471

8.1.4 Dynamic Embrittlement 472

8.2 Fracture Mechanics Test Methods 472

8.2.1 Major Variables Affecting Environment-Assisted Cracking 480

8.2.1.1 Alloy Chemistry and Thermomechanical Treatment 480

8.2.1.2 Environment 483

8.2.1.3 Temperature and Pressure 485

8.2.2 Environment-Assisted Cracking in Plastics 487

8.2.3 Environment-Assisted Cracking in Ceramics and Glasses 489

8.3 Life and Crack-Length Calculations 492

References 493

Problems 496

Review 496

Practice 497

Design 497

Extend 497

Chapter 9 Cyclic Stress and Strain Fatigue 499

9.1 Macrofractography of Fatigue Failures 499

9.2 Cyclic Stress-Controlled Fatigue 503

9.2.1 Effect of Mean Stress on Fatigue Life 506

9.2.2 Stress Fluctuation, Cumulative Damage, and Safe-Life Design 508

9.2.3 Notch Effects and Fatigue Initiation 511

9.2.4 Material Behavior: Metal Alloys 516

9.2.4.1 Surface Treatment 520

9.2.5 Material Behavior: Polymers 523

9.2.6 Material Behavior: Composites 526

9.2.6.1 Particulate Composites 526

9.2.6.2 Fiber Composites 527

9.3 Cyclic Strain-Controlled Fatigue 529

9.3.1 Cycle-Dependent Material Response 531

9.3.2 Strain Life Curves 538

9.4 Fatigue Life Estimations for Notched Components 541

9.5 Fatigue Crack Initiation Mechanisms 545

9.6 Avoidance of Fatigue Damage 547

9.6.1 Favorable Residual Compressive Stresses 547

9.6.2 Pretensioning of Load-Bearing Members 550

References 554

Problems 556

Review 556

Practice 556

Design 557

Extend 557

Chapter 10 Fatigue Crack Propagation 559

10.1 Stress and Crack Length Correlations with FCP 559

10.1.1 Fatigue Life Calculations 563

10.1.2 Fail-Safe Design and Retirement for Cause 567

10.2 Macroscopic Fracture Modes in Fatigue 568

FATIGUE FAILURE ANALYSIS CASE STUDY 10.1: Stress Intensity Factor Estimate Based on Fatigue Growth Bands 571

10.3 Microscopic Fracture Mechanisms 572

10.3.1 Correlations with the Stress Intensity Factor 575

10.4 Crack Growth Behavior at ΔK Extremes 578

10.4.1 High ΔK Levels 578

10.4.2 Low ΔK Levels 583

10.4.2.1 Estimation of Short-Crack Growth Behavior 590

10.5 Influence of Load Interactions 592

10.5.1 Load Interaction Macroscopic Appearance 596

10.6 Environmentally Enhanced FCP (Corrosion Fatigue) 600

10.6.1 Corrosion Fatigue Superposition Model 605

10.7 Microstructural Aspects of FCP in Metal Alloys 606

10.7.1 Normalization and Calculation of FCP Data 615

10.8 Fatigue Crack Propagation in Engineering Plastics 618

10.8.1 Polymer FCP Frequency Sensitivity 620

10.8.2 Fracture Surface Micromorphology 625

10.9 Fatigue Crack Propagation in Ceramics 628

10.10 Fatigue Crack Propagation in Composites 632

References 635

Further Reading 641

Problems 641

Review 641

Practice 642

Design 643

Extend 644

Chapter 11 Analyses of Engineering Failures 645

11.1 Typical Defects 647

11.2 Macroscopic Fracture Surface Examination 647

11.3 Metallographic and Fractographic Examination 651

11.4 Component Failure Analysis Data 652

11.5 Case Histories 652

CASE 1: Shotgun Barrel Failures 653

Overview of Failure Events and Background Information 653

Proposed Causation Theories 654

Fractographic Evidence of Failed Gun Barrels 655

Estimation of the Material’s Fatigue Endurance Limit 655

Microfractography of Fatigue Fracture in Gun Barrel Material 656

The Verdicts 658

CASE 2: Analysis of Aileron Power Control Cylinder Service Failure 658

CASE 3: Failure of Pittsburgh Station Generator Rotor Forging 660

CASE 4: Stress Corrosion Cracking Failure of the Point Pleasant Bridge 661

CASE 5: Weld Cold Crack-Induced Failure of Kings Bridge, Melbourne, Australia 664

CASE 6: Failure Analysis of 175-mm Gun Tube 665

CASE 7: Hydrotest Failure of a 660-cm-Diameter Rocket Motor Casing 670

CASE 8: Premature Fracture of Powder-Pressing Die 673

CASE 9: A Laboratory Analysis of a Lavatory Failure 674

11.6 Additional Comments Regarding Welded Bridges 676

References 680

Further Reading 681

Chapter 12 Consequences of Product Failure 683

12.1 Introduction to Product Liability 683

12.2 History of Product Liability 684

12.2.1 Caveat Emptor and Express Warranty 685

12.2.2 Implied Warranty 685

12.2.3 Privity of Contract 686

12.2.4 Assault on Privity Protection 687

12.2.5 Negligence 691

12.2.6 Strict Liability 694

12.2.7 Attempts to Codify Product Liability Case Law 696

12.3 Product Recall 697

12.3.1 Regulatory Requirements and Considerations 698

12.3.1.1 Consumer Product Safety Commission 698

12.3.1.1.1 Defect 699

12.3.1.1.2 Substantial Product Hazard 700

12.3.1.1.3 Unreasonable Risk 700

12.3.1.2 International Governmental Landscape 701

12.3.2 Technical Considerations Regarding Potential Recalls 701

12.3.2.1 Determination of the Failure Process 702

12.3.2.2 Identification of the Affected Product Population 704

12.3.2.3 Assessment of Risk Associated with Product Failure 705

12.3.2.4 Generation of an Appropriate Corrective Action Plan 707

12.3.3 Proactive Considerations 707

12.3.3.1 Think Like a Consumer 707

12.3.3.2 Test Products Thoroughly 707

12.3.3.3 Ensure Adequate Traceability 708

12.3.3.4 Manage Change Carefully 708

RECALL CASE STUDY: The “Unstable” Ladder 708

References 710

Problems 712

Review 712

Extend 712

Chapter 13 Final Thoughts 713

13.1 Funding Highway and Bridge Repairs 713

13.2 Nonredundant Bridges 715

13.3 Dee Bridge Collapse, Chester, England (1847) 716

13.4 A Final Reflection 718

References 719

Appendix A Fracture Surface Preservation, Cleaning and Replication Techniques, and Image Interpretation 721

A.1 Fracture Surface Preservation 721

A.2 Fracture Surface Cleaning 721

A.3 Replica Preparation and Image Interpretation 723

References 725

Appendix B K Calibrations for Typical Fracture Toughness and Fatigue Crack Propagation Test Specimens 727

Appendix C Y Calibration Factors for Elliptical and Semicircular Surface Flaws 731

Appendix D Suggested Checklist of Data Desirable for Complete Failure Analysis 733

Author Index 737

Materials Index 749

Subject Index 755

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책