logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Wireless RF Energy Transfer in the Massive Iot Era: Towards Sustainable Zero-Energy Networks

Wireless RF Energy Transfer in the Massive Iot Era: Towards Sustainable Zero-Energy Networks (Hardcover)

Hirley Alves, Onel Alcaraz Lopez (지은이)
John Wiley and Sons Ltd
259,060원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
212,420원 -18% 0원
10,630원
201,790원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Wireless RF Energy Transfer in the Massive Iot Era: Towards Sustainable Zero-Energy Networks
eBook 미리보기

책 정보

· 제목 : Wireless RF Energy Transfer in the Massive Iot Era: Towards Sustainable Zero-Energy Networks (Hardcover) 
· 분류 : 외국도서 > 기술공학 > 기술공학 > 전력자원 > 일반
· ISBN : 9781119718666
· 쪽수 : 256쪽
· 출판일 : 2021-11-23

목차

Preface ix

Acknowledgments xi

Acronyms xii

Mathematical Notation xvi

About the Companion Website xviii

1 Massive IoT 1

1.1 Selected Use-cases and Scenarios 4

1.2 Key Technologies 6

1.3 Requirements and KPIs 10

1.4 Key Enablers 12

1.4.1 Holistic and Globally Scalable Massive IoT 12

1.4.2 Sustainable Connectivity 13

1.5 Final Remarks and Discussions 17

2 Wireless RF Energy Transfer: An Overview 20

2.1 Energy Harvesting 20

2.1.1 EH Sources 20

2.1.2 RF Energy Transfer 22

2.2 RF–EH Performance 24

2.2.1 Analytical Models 24

2.2.2 State-of-the-art on RF EH 26

2.3 RF–EH IoT 30

2.3.1 Architectures of IoT RF EH Networks 30

2.3.2 Green WET 31

2.3.3 WIT-WET Layouts 32

2.3.4 RF EH in IoT Use Cases 32

2.4 Enabling Efficient RF-WET 35

2.4.1 Energy Beamforming 35

2.4.2 CSI-limited Schemes 35

2.4.3 Distributed Antenna System 37

2.4.4 Enhancements in Hardware and Medium 37

2.4.5 New Spectrum Opportunities 39

2.4.6 Resource Scheduling and Optimization 40

2.4.7 Distributed Ledger Technology 41

2.5 Final Remarks 41

3 Ambient RF EH 43

3.1 Motivation and Overview 43

3.1.1 Hybrid of RF–EH and Power Grid 45

3.1.2 Energy Usage Protocols 46

3.1.3 On Efficient Ambient RF–RH Designs 48

3.2 Measurement Campaigns 51

3.2.1 Greater London (2012) 52

3.2.2 Diyarbakir (2014) 52

3.2.3 Flanders (2017-2019) 53

3.2.4 Other Measurements 54

3.3 Energy Arrival Modeling 55

3.3.1 Based on Arbitrary Distributions 56

3.3.2 Based on Stochastic Geometry 56

3.4 A Stochastic Geometry-based Study 57

3.4.1 System Model and Assumptions 57

3.4.2 Energy Coverage Probability 59

3.4.3 Average Harvested Energy 62

3.4.4 Meta-distribution of Harvested Energy 63

3.4.5 Numerical Results 64

3.5 Final Considerations 67

4 Efficient Schemes for WET 68

4.1 EH from Dedicated WET 68

4.2 Energy Beamforming 68

4.2.1 Low-complexity EB Design 71

4.2.2 CSI-limited Energy Beamforming 74

4.2.3 Performance Analysis 76

4.3 CSI-free Multi-antenna Techniques 80

4.3.1 System Model and Assumptions 81

4.3.2 Positioning-agnostic CSI-free WET 82

4.3.3 Positioning-aware CSI-free WET 94

4.4 On the Massive WET Performance 96

4.5 Final Considerations 98

5 Multi-PB Massive WET 99

5.1 On the PBs Deployment 99

5.1.1 Positioning-aware Deployments 99

5.1.2 Positioning-agnostic Deployments 104

5.2 Multi-antenna Energy Beamforming 109

5.2.1 Centralized Energy Beamforming 110

5.2.2 Distributed Energy Beamforming 111

5.2.3 Available RF Energy 111

5.3 Distributed CSI-free WET 113

5.3.1 SA, AA–IS and RPS–EMW 113

5.3.2 AA–SS 114

5.3.3 RAB 117

5.3.4 Positioning-aware CSI-free Schemes 118

5.3.5 Numerical Examples 118

5.4 On the Deployment Costs 120

5.5 Final Remarks 123

6 Wireless-powered Communication Networks 125

6.1 WPCN Models 125

6.2 Reliable Single-user WPCN 127

6.2.1 Harvest-then-transmit (HTT) 127

6.2.2 Allowing Energy Accumulation 130

6.2.3 HTT versus FEIPC 135

6.3 Multi-user Resource Allocation 139

6.3.1 Signal Model 140

6.3.2 Problem Formulation 141

6.3.3 Optimization Framework 142

6.3.4 TDMA versus SDMA 143

6.4 Cognitive MAC 145

6.4.1 Time Sharing and Scheduling 148

6.4.2 MAC Protocol at the Device Side 150

6.4.3 MAC Protocol at the HAP Side 151

6.5 Final Remarks 152

7 Simultaneous Wireless Information and Power Transfer 155

7.1 SWIPT Schemes 155

7.2 Separate EH and ID Receivers 156

7.2.1 Problem Formulation 157

7.2.2 Optimal Solution 158

7.2.3 Performance Results 159

7.3 Co-located EH and ID Receivers 160

7.3.1 Time Switching 162

7.3.2 Power splitting 165

7.3.3 TS versus PS 167

7.4 Enablers for Efficient SWIPT 171

7.4.1 Waveform Optimization 171

7.4.2 Multicarrier SWIPT 174

7.4.3 Cooperative Relaying 175

7.4.4 Interference Exploitation 176

7.4.5 Artificial Intelligence 177

7.5 Final Considerations 177

8 Final Notes 179

8.1 Summary 179

8.2 Future Research Directions 182

A A Brief Overview on Finite Block Length Coding 187

A.1 Finite Block Length Model 187

B Distribution of Transferred RF Energy Under CSI-free WET 191

B.1 Proof of Theorem 4.2 191

B.2 Proof of Theorem 4.4 192

C Clustering Algorithms 198

C.1 Partitioning Methods 198

C.1.1 K-Means 199

C.1.2 K-Medoids 199

C.1.3 K-Modes 199

C.2 Hierarchical Methods 200

C.3 Other Methods 200

C.4 Pre-processing 201

D Required SNR for a Target Decoding Error Probability (Proof of Theorem 6.1) 202

D.1 On the Convergence of Algorithm 3 203

Bibliography 205

Index 226

저자소개

Hirley Alves (지은이)    정보 더보기
펼치기
Onel Alcaraz Lopez (지은이)    정보 더보기
펼치기
이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책