logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Principles of Superconducting Quantum Computers

Principles of Superconducting Quantum Computers (Hardcover)

Daniel D. Stancil, Gregory T. Byrd (지은이)
John Wiley and Sons Ltd
45,000원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
45,000원 -0% 0원
1,350원
43,650원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Principles of Superconducting Quantum Computers
eBook 미리보기

책 정보

· 제목 : Principles of Superconducting Quantum Computers (Hardcover) 
· 분류 : 외국도서 > 컴퓨터 > 광 데이터 처리
· ISBN : 9781119750727
· 쪽수 : 384쪽
· 출판일 : 2022-04-05

목차

1 Qubits, Gates, and Circuits 1

1.1 Bits and Qubits . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Circuits in Space vs. Circuits in Time . . . . . . . 1

1.1.2 Superposition . . . . . . . . . . . . . . . . . . . . . 2

1.1.3 No Cloning . . . . . . . . . . . . . . . . . . . . . . 3

1.1.4 Reversibility . . . . . . . . . . . . . . . . . . . . . 4

1.1.5 Entanglement . . . . . . . . . . . . . . . . . . . . . 4

1.2 Single-Qubit States . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Measurement and the Born Rule . . . . . . . . . . . . . . 6

1.4 Unitary Operations and Single-Qubit Gates . . . . . . . . 7

1.5 Two-Qubit Gates . . . . . . . . . . . . . . . . . . . . . . . 9

1.5.1 Two-Qubit States . . . . . . . . . . . . . . . . . . . 9

1.5.2 Two-Qubit Gates . . . . . . . . . . . . . . . . . . . 11

1.5.3 Controlled-NOT . . . . . . . . . . . . . . . . . . . 13

1.6 Bell State . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.7 No Cloning, Revisited . . . . . . . . . . . . . . . . . . . . 15

1.8 Example: Deutsch’s Problem . . . . . . . . . . . . . . . . 17

1.9 Key Characteristics of Quantum Computing . . . . . . . . 20

1.10 Quantum Computing Systems . . . . . . . . . . . . . . . . 22

1.11 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 Physics of Single Qubit Gates 29

2.1 Requirements for a Quantum Computer . . . . . . . . . . 29

2.2 Single Qubit Gates . . . . . . . . . . . . . . . . . . . . . . 30

2.2.1 Rotations . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.2 Two State Systems . . . . . . . . . . . . . . . . . . 38

2.2.3 Creating Rotations: Rabi Oscillations . . . . . . . 44

2.3 Quantum State Tomography . . . . . . . . . . . . . . . . 49

2.4 Expectation Values and the Pauli Operators . . . . . . . . 51

2.5 Density Matrix . . . . . . . . . . . . . . . . . . . . . . . . 52

2.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

iii

iv CONTENTS

3 Physics of Two Qubit Gates 59

3.1 √

iSWAP Gate . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2 Coupled Tunable Qubits . . . . . . . . . . . . . . . . . . . 61

3.3 Fixed-frequency Qubits . . . . . . . . . . . . . . . . . . . 64

3.4 Other Controlled Gates . . . . . . . . . . . . . . . . . . . 66

3.5 Two-qubit States and the Density Matrix . . . . . . . . . 68

3.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 Superconducting Quantum Computer Systems 73

4.1 Transmission Lines . . . . . . . . . . . . . . . . . . . . . . 73

4.1.1 General Transmission Line Equations . . . . . . . 73

4.1.2 Lossless Transmission Lines . . . . . . . . . . . . . 75

4.1.3 Transmission Lines with Loss . . . . . . . . . . . . 77

4.2 Terminated Lossless Line . . . . . . . . . . . . . . . . . . 82

4.2.1 Reflection Coefficient . . . . . . . . . . . . . . . . . 82

4.2.2 Power (Flow of Energy) and Return Loss . . . . . 84

4.2.3 Standing Wave Ratio (SWR) . . . . . . . . . . . . 85

4.2.4 Impedance as a Function of Position . . . . . . . . 86

4.2.5 Quarter Wave Transformer . . . . . . . . . . . . . 88

4.2.6 Coaxial, Microstrip, and Co-planar Lines . . . . . 89

4.3 S Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3.1 Lossless Condition . . . . . . . . . . . . . . . . . . 93

4.3.2 Reciprocity . . . . . . . . . . . . . . . . . . . . . . 94

4.4 Transmission (ABCD) Matrices . . . . . . . . . . . . . . . 94

4.5 Attenuators . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.6 Circulators and Isolators . . . . . . . . . . . . . . . . . . . 100

4.7 Power Dividers/Combiners . . . . . . . . . . . . . . . . . 102

4.8 Mixers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.9 Low-pass Filters . . . . . . . . . . . . . . . . . . . . . . . 111

4.10 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.10.1 Thermal Noise . . . . . . . . . . . . . . . . . . . . 113

4.10.2 Equivalent Noise Temperature . . . . . . . . . . . 116

4.10.3 Noise Factor and Noise Figure . . . . . . . . . . . 117

4.10.4 Attenuators and Noise . . . . . . . . . . . . . . . . 118

4.10.5 Noise in Cascaded Systems . . . . . . . . . . . . . 120

4.11 Low Noise Amplifiers . . . . . . . . . . . . . . . . . . . . . 121

4.12 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5 Resonators: Classical Treatment 125

5.1 Parallel Lumped Element Resonator . . . . . . . . . . . . 125

5.2 Capacitive Coupling to a Parallel Lumped-Element Res[1]onator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.3 Transmission Line Resonator . . . . . . . . . . . . . . . . 130

5.4 Capacitive Coupling to a Transmission Line Resonator . . 133

5.5 Capacitively-Coupled Lossless Resonators . . . . . . . . . 136

CONTENTS v

5.6 Classical Model of Qubit Readout . . . . . . . . . . . . . 142

5.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6 Resonators: Quantum Treatment 149

6.1 Lagrangian Mechanics . . . . . . . . . . . . . . . . . . . . 149

6.1.1 Hamilton’s Principle . . . . . . . . . . . . . . . . . 149

6.1.2 Calculus of Variations . . . . . . . . . . . . . . . . 150

6.1.3 Lagrangian Equation of Motion . . . . . . . . . . . 151

6.2 Hamiltonian Mechanics . . . . . . . . . . . . . . . . . . . 153

6.3 Harmonic Oscillators . . . . . . . . . . . . . . . . . . . . . 153

6.3.1 Classical Harmonic Oscillator . . . . . . . . . . . . 154

6.3.2 Quantum Mechanical Harmonic Oscillator . . . . . 156

6.3.3 Raising and Lowering Operators . . . . . . . . . . 158

6.3.4 Can a Harmonic Oscillator be used as a Qubit? . . 160

6.4 Circuit Quantum Electrodynamics . . . . . . . . . . . . . 162

6.4.1 Classical LC Resonant Circuit . . . . . . . . . . . 162

6.4.2 Quantization of the LC Circuit . . . . . . . . . . . 163

6.4.3 Circuit Electrodynamic Approach for General Cir[1]cuits . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.4.4 Circuit Model for Transmission Line Resonator . . 165

6.4.5 Quantizing a Transmission Line Resonator . . . . 168

6.4.6 Quantized Coupled LC Resonant Circuits . . . . . 169

6.4.7 Schrödinger, Heisenberg, and Interaction Pictures 172

6.4.8 Resonant Circuits and Qubits . . . . . . . . . . . . 175

6.4.9 The Dispersive Regime . . . . . . . . . . . . . . . . 178

6.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

7 Theory of Superconductivity 183

7.1 Bosons and Fermions . . . . . . . . . . . . . . . . . . . . . 184

7.2 Bloch Theorem . . . . . . . . . . . . . . . . . . . . . . . . 186

7.3 Free Electron Model for Metals . . . . . . . . . . . . . . . 188

7.3.1 Discrete States in Finite Samples . . . . . . . . . . 189

7.3.2 Phonons . . . . . . . . . . . . . . . . . . . . . . . . 191

7.3.3 Debye Model . . . . . . . . . . . . . . . . . . . . . 193

7.3.4 Electron-Phonon Scattering and Electrical Con[1]ductivity . . . . . . . . . . . . . . . . . . . . . . . 194

7.3.5 Perfect Conductor vs. Superconductor . . . . . . . 196

7.4 Bardeen, Cooper and Schrieffer Theory of Superconduc[1]tivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

7.4.1 Cooper Pair Model . . . . . . . . . . . . . . . . . . 199

7.4.2 Dielectric Function . . . . . . . . . . . . . . . . . . 203

7.4.3 Jellium . . . . . . . . . . . . . . . . . . . . . . . . 204

7.4.4 Scattering Amplitude and Attractive Electron-Electron

Interaction . . . . . . . . . . . . . . . . . . . . . . 208

7.4.5 Interpretation of Attractive Interaction . . . . . . 209

vi CONTENTS

7.4.6 Superconductor Hamiltonian . . . . . . . . . . . . 210

7.4.7 Superconducting Ground State . . . . . . . . . . . 211

7.5 Electrodynamics of Superconductors . . . . . . . . . . . . 215

7.5.1 Cooper Pairs and the Macroscopic Wave Function 215

7.5.2 Potential Functions . . . . . . . . . . . . . . . . . . 216

7.5.3 London Equations . . . . . . . . . . . . . . . . . . 217

7.5.4 London Gauge . . . . . . . . . . . . . . . . . . . . 219

7.5.5 Penetration Depth . . . . . . . . . . . . . . . . . . 220

7.5.6 Flux Quantization . . . . . . . . . . . . . . . . . . 221

7.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . 223

7.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

8 Josephson Junctions 225

8.1 Tunneling . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

8.1.1 Reflection from a Barrier . . . . . . . . . . . . . . 226

8.1.2 Finite Thickness Barrier . . . . . . . . . . . . . . . 229

8.2 Josephson Junctions . . . . . . . . . . . . . . . . . . . . . 231

8.2.1 Current and Voltage Relations . . . . . . . . . . . 231

8.2.2 Josephson Junction Hamiltonian . . . . . . . . . . 235

8.2.3 Quantized Josephson Junction Analysis . . . . . . 237

8.3 Superconducting Quantum Interference Devices (SQUIDs) 239

8.4 Josephson Junction Parametric Amplifiers . . . . . . . . . 241

8.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

9 Errors and Error Mitigation 245

9.1 NISQ Processors . . . . . . . . . . . . . . . . . . . . . . . 245

9.2 Decoherence . . . . . . . . . . . . . . . . . . . . . . . . . . 246

9.3 State Preparation and Measurement Errors . . . . . . . . 248

9.4 Characterizing Gate Errors . . . . . . . . . . . . . . . . . 250

9.5 State Leakage and Suppression using Pulse Shaping . . . 254

9.6 Zero-Noise Extrapolation . . . . . . . . . . . . . . . . . . 257

9.7 Optimized Control using Deep Learning . . . . . . . . . . 260

9.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

10 Quantum Error Correction 265

10.1 Review of Classical Error Correction . . . . . . . . . . . . 265

10.1.1 Error Detection . . . . . . . . . . . . . . . . . . . . 266

10.1.2 Error Correction: Repetition Code . . . . . . . . . 267

10.1.3 Hamming Code . . . . . . . . . . . . . . . . . . . . 268

10.2 Quantum Errors . . . . . . . . . . . . . . . . . . . . . . . 269

10.3 Detecting and Correcting Quantum Errors . . . . . . . . . 272

10.3.1 Bit Flip . . . . . . . . . . . . . . . . . . . . . . . . 272

10.3.2 Phase Flip . . . . . . . . . . . . . . . . . . . . . . 274

10.3.3 Correcting Bit and Phase Flips: Shor’s 9-qubit Code275

10.3.4 Arbitrary Rotations . . . . . . . . . . . . . . . . . 277

CONTENTS vii

10.4 Stabilizer Codes . . . . . . . . . . . . . . . . . . . . . . . 279

10.4.1 Stabilizers . . . . . . . . . . . . . . . . . . . . . . . 279

10.4.2 Stabilizers for Error Correction . . . . . . . . . . . 280

10.5 Operating on Logical Qubits . . . . . . . . . . . . . . . . 283

10.6 Error Thresholds . . . . . . . . . . . . . . . . . . . . . . . 285

10.6.1 Concatenation of Error Codes . . . . . . . . . . . . 286

10.6.2 Threshold Theorem . . . . . . . . . . . . . . . . . 286

10.7 Surface Codes . . . . . . . . . . . . . . . . . . . . . . . . . 288

10.7.1 Stabilizers . . . . . . . . . . . . . . . . . . . . . . . 289

10.7.2 Error Detection and Correction . . . . . . . . . . . 291

10.7.3 Logical X and Z Operators . . . . . . . . . . . . . 295

10.7.4 Multiple Qubits: Lattice Surgery . . . . . . . . . . 297

10.7.5 CNOT . . . . . . . . . . . . . . . . . . . . . . . . . 301

10.7.6 Single-Qubit Gates . . . . . . . . . . . . . . . . . . 305

10.8 Summary and Further Reading . . . . . . . . . . . . . . . 306

10.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

11 Quantum Logic: Efficient Implementation of Classical

Computations 309

11.1 Reversible Logic . . . . . . . . . . . . . . . . . . . . . . . 310

11.1.1 Reversible Logic Gates . . . . . . . . . . . . . . . . 311

11.1.2 Reversible Logic Circuits . . . . . . . . . . . . . . 313

11.2 Quantum Logic Circuits . . . . . . . . . . . . . . . . . . . 317

11.2.1 Entanglement and Uncomputing . . . . . . . . . . 317

11.2.2 Multi-qubit gates . . . . . . . . . . . . . . . . . . . 319

11.2.3 Qubit topology . . . . . . . . . . . . . . . . . . . . 321

11.3 Efficient Arithmetic Circuits: Adder . . . . . . . . . . . . 322

11.3.1 Quantum Ripple Carry Adder . . . . . . . . . . . . 323

11.3.2 In-place Ripple Carry Adder . . . . . . . . . . . . 326

11.3.3 Carry-Lookahead Adder . . . . . . . . . . . . . . . 329

11.3.4 Adder Comparison . . . . . . . . . . . . . . . . . . 334

11.4 Phase Logic . . . . . . . . . . . . . . . . . . . . . . . . . . 336

11.4.1 Controlled-Z and Controlled-Phase Gates . . . . . 336

11.4.2 Selective Phase Change . . . . . . . . . . . . . . . 339

11.4.3 Phase Logic Gates . . . . . . . . . . . . . . . . . . 341

11.5 Summary and Further Reading . . . . . . . . . . . . . . . 342

11.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

12 Some Quantum Algorithms 347

12.1 Computational Complexity . . . . . . . . . . . . . . . . . 347

12.1.1 Quantum Program Run-Time . . . . . . . . . . . . 348

12.1.2 Classical Complexity Classes . . . . . . . . . . . . 349

12.1.3 Quantum Complexity . . . . . . . . . . . . . . . . 350

12.2 Grover’s Search Algorithm . . . . . . . . . . . . . . . . . . 351

12.2.1 Grover Iteration . . . . . . . . . . . . . . . . . . . 351

viii CONTENTS

12.2.2 Quantum Implementation . . . . . . . . . . . . . . 354

12.2.3 Generalizations . . . . . . . . . . . . . . . . . . . . 357

12.3 Quantum Fourier Transform . . . . . . . . . . . . . . . . . 358

12.3.1 Frequencies and Quantum-encoded Signals . . . . 358

12.3.2 Inverse QFT . . . . . . . . . . . . . . . . . . . . . 361

12.3.3 Quantum Implementation . . . . . . . . . . . . . . 362

12.3.4 Computational Complexity . . . . . . . . . . . . . 365

12.4 Quantum Phase Estimation . . . . . . . . . . . . . . . . . 365

12.4.1 Quantum Implementation . . . . . . . . . . . . . . 366

12.4.2 Computational Complexity and Other Issues . . . 367

12.5 Shor’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . 368

12.5.1 Hybrid Classical-Quantum Algorithm . . . . . . . 368

12.5.2 Finding the Period . . . . . . . . . . . . . . . . . . 370

12.5.3 Computational Complexity . . . . . . . . . . . . . 373

12.6 Variational Quantum Algorithms . . . . . . . . . . . . . . 375

12.6.1 Variational Quantum Eigensolver . . . . . . . . . . 377

12.6.2 Quantum Approximate Optimization Algorithm . 382

12.6.3 Challenges and Opportunities . . . . . . . . . . . . 386

12.7 Summary and Further Reading . . . . . . . . . . . . . . . 387

12.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 388

저자소개

Daniel D. Stancil (지은이)    정보 더보기
펼치기
이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책