책 이미지

책 정보
· 분류 : 외국도서 > 기술공학 > 기술공학 > 로봇공학
· ISBN : 9781119782742
· 쪽수 : 288쪽
· 출판일 : 2021-10-19
목차
Author Biographies xi
List of Figures xiii
List of Tables xvii
Preface xix
Part I Human-robot Interaction Control 1
1 Introduction 3
1.1 Human-Robot Interaction Control 3
1.2 Reinforcement Learning for Control 6
1.3 Structure of the Book 7
References 10
2 Environment Model of Human-Robot Interaction 17
2.1 Impedance and Admittance 17
2.2 Impedance Model for Human-Robot Interaction 21
2.3 Identification of Human-Robot Interaction Model 24
2.4 Conclusions 30
References 30
3 Model Based Human-Robot Interaction Control 33
3.1 Task Space Impedance/Admittance Control 33
3.2 Joint Space Impedance Control 36
3.3 Accuracy and Robustness 37
3.4 Simulations 39
3.5 Conclusions 42
References 44
COPYRIGHTED MATERIAL
4 Model Free Human-Robot Interaction Control 45
4.1 Task-Space Control Using Joint-Space Dynamics 45
4.2 Task-Space Control Using Task-Space Dynamics 52
4.3 Joint Space Control 53
4.4 Simulations 54
4.5 Experiments 55
4.6 Conclusions 68
References 71
5 Human-in-the-loop Control Using Euler Angles 73
5.1 Introduction 73
5.2 Joint-Space Control 74
5.3 Task-Space Control 79
5.4 Experiments 83
5.5 Conclusions 92
References 94
Part II Reinforcement Learning for Robot Interaction Control 97
6 Reinforcement Learning for Robot Position/Force Control 99
6.1 Introduction 99
6.2 Position/Force Control Using an Impedance Model 100
6.3 Reinforcement Learning Based Position/Force Control 103
6.4 Simulations and Experiments 110
6.5 Conclusions 117
References 117
7 Continuous-Time Reinforcement Learning for Force Control 119
7.1 Introduction 119
7.2 K-means Clustering for Reinforcement Learning 120
7.3 Position/Force Control Using Reinforcement Learning 124
7.4 Experiments 130
7.5 Conclusions 136
References 136
8 Robot Control in Worst-Case Uncertainty Using Reinforcement Learning 139
8.1 Introduction 139
8.2 Robust Control Using Discrete-Time Reinforcement Learning 141
8.3 Double Q-Learning with k-Nearest Neighbors 144
8.4 Robust Control Using Continuous-Time Reinforcement Learning 150
8.5 Simulations and Experiments: Discrete-Time Case 154
8.6 Simulations and Experiments: Continuous-Time Case 161
8.7 Conclusions 170
References 170
9 Redundant Robots Control Using Multi-Agent Reinforcement Learning 173
9.1 Introduction 173
9.2 Redundant Robot Control 175
9.3 Multi-Agent Reinforcement Learning for Redundant Robot Control 179
9.4 Simulations and experiments 183
9.5 Conclusions 187
References 189
10 Robot 2 Neural Control Using Reinforcement Learning 193
10.1 Introduction 193
10.2 2 Neural Control Using Discrete-Time Reinforcement Learning 194
10.3 2 Neural Control in Continuous Time 207
10.4 Examples 219
10.5 Conclusion 229
References 229
11 Conclusions 233
A Robot Kinematics and Dynamics 235
A.1 Kinematics 235
A.2 Dynamics 237
A.3 Examples 240
References 246
B Reinforcement Learning for Control 247
B.1 Markov decision processes 247
B.2 Value functions 248
B.3 Iterations 250
B.4 TD learning 251
Reference 258
Index 259