책 이미지
책 정보
· 분류 : 외국도서 > 기술공학 > 기술공학 > 레이저/광기술
· ISBN : 9781119881605
· 쪽수 : 608쪽
· 출판일 : 2023-01-25
목차
Preface to First Edition
Preface to Second Edition
About the Companion Website
PART I PRINCIPLES OF INDUSTRIAL LASERS
1 Laser Background
1.1 Laser Generation
1.1.1 Atomic Transitions
1.1.1.1 Population Distribution
1.1.1.2 Absorption
1.1.1.3 Spontaneous Emission
1.1.1.4 Stimulated Emission
1.1.1.5 Einstein Coefficients: Ae, B12, B21
1.1.2 Lifetime
1.1.3 Optical Absorption
1.1.4 Population Inversion
1.1.5 Threshold Gain
1.1.6 Two-Photon Absorption
1.2 Optical Resonators
1.2.1 Standing Waves in a Rectangular Cavity
1.2.2 Planar Resonators
1.2.2.1 Beam Modes
1.2.2.2 Line Selection
1.2.2.3 Mode Selection
1.2.3 Confocal Resonators
1.2.4 Concentric Resonators
1.3 Laser Pumping
1.3.1 Optical Pumping
1.3.1.1 Arc or Flash Lamp Pumping
1.3.1.2 Diode Laser Pumping
1.3.2 Electrical Pumping
1.4 System Levels
1.4.1 Two-Level System
1.4.2 Three-Level System
1.4.3 Four-Level System
1.5 Broadening Mechanisms
1.5.1 Line-Shape Function
1.5.2 Line-Broadening Mechanisms
1.5.2.1 Homogeneous Broadening
1.5.2.2 Inhomogeneous Broadening
1.5.3 Comparison of Individual Mechanisms
1.6 Beam Modification
1.6.1 Quality Factor
1.6.2 Q-Switching
1.6.3 Mode-Locking
1.7 Beam Characteristics
1.7.1 Beam Divergence
1.7.2 Monochromaticity
1.7.3 Beam Coherence
1.7.3.1 Spatial Coherence
1.7.3.2 Temporal Coherence
1.7.4 Intensity and Brightness
1.7.5 Focusing
1.8 Summary
References
Appendix 1A
Problems
2 Types Of Lasers
2.1 Solid State Lasers
2.1.1 The Nd:YAG Laser
2.1.2 The Nd:Glass Laser
2.2 Gas Lasers
2.2.1 Neutral Atom Lasers
2.2.2 Ion Lasers
2.2.4 Molecular Gas Lasers
2.2.4.1 Vibrational-Rotational Lasers
2.2.4.2 Excimer Lasers
2.3 Semiconductor (Diode) Lasers
2.3.1 Semiconductor Background
2.3.2 Semiconductor Lasers
2.3.3 Semiconductor Laser Types
2.3.3.1 Homojunction Lasers
2.3.3.2 Heterojunction Lasers
2.3.3.3 Quantum Well Lasers
2.3.4 Low Power Diode Lasers
2.3.5 High Power Diode Lasers
2.3.6 Applications of High Power Diode Lasers
2.4 New Developments in Industrial Laser Technology
2.4.1 Slab Lasers
2.4.2 Disk Lasers
2.4.3 Ultrafast (Femtosecond) Lasers
2.4.4 Fiber Lasers
2.4.4.1 Pumping
2.4.4.2 Pulsed Output
2.4.4.3 CW Output
2.4.4.4 Power Scaling
2.4.4.5 Applications of Fiber Lasers
2.4.4.6 Advantages of Fiber Lasers
2.4.4.7 Disadvantages of Fiber Lasers
2.5 Summary
References
Appendix 2A
Appendix 2B
Appendix 2C
Problems
3 Beam Delivery
3.1 The Electromagnetic Spectrum
3.2 Birefringence
3.3 Brewster Angle
3.4 Polarization
3.5 Beam Expanders
3.6 Beam Splitters
3.7 Beam Delivery Systems
3.7.1 Conventional Beam Delivery
3.7.2 Fiber Optic Systems
3.7.2.1 Optical Fiber Characteristics
3.7.2.2 Waveguide Structure
3.7.2.3 Background
3.7.2.4 Fiber Types
3.7.2.5 Beam Degradation
3.7.2.6 Application of Optical Fibers in High Power Laser Systems
3.8 Beam Shaping
3.8.1 Beam Shaping Using Diffractive Optics
3.8.1.1 Fresnel Phase Plate
3.8.1.2 Diffractive Optics Design
3.8.1.3 Beam Propagation After Diffraction
3.8.1.4 Diffractive Optical Element Construction
3.8.2 Beam Shaping Using Coherent Beam Combining and Optical Phase Array
3.9 Summary
References
Appendix 3A
Problems
PART II - ENGINEERING BACKGROUND
4 Heat And Fluid Flow
4.1 Energy Balance During Processing
4.2 Heat Flow in the Workpiece
4.2.1 Temperature Distribution
4.2.1.1 Thick Plate with Point Heat Source (Three-Dimensional)
4.2.1.2 Thin Plate with Line Heat Source (Two Dimensional)
4.2.2 Peak Temperatures
4.2.3 Cooling Rates
4.2.4 Gaussian Heat Source
4.2.5 The Two-Temperature Model
4.3 Fluid Flow in Molten Pool
4.3.1 Continuity Equation
4.3.2 Navier-Stokes Equations
4.3.3 Surface Tension Effect
4.3.4 Free Surface Modeling
4.4 Summary
References
Appendix 4A
Appendix 4B Derivation of Equation (4.2a)
Appendix 4C Moving Heat Source
Appendix 4D
Appendix 4E
Appendix 4F
Appendix 4G
Problems
5 The Microstructure
5.1 Process Microstructure
5.1.1 Fusion Zone
5.1.1.1 Initial Solidification
5.1.1.2 Microstructure
5.1.1.3 Nucleation and Grain Refinement in Molten Pool
5.1.2 Zone of Partial Melting
5.1.3 Heat-Affected Zone
5.1.3.1 Pure Metals
5.1.3.2 Precipitation-Hardening and Nonferrous Alloys
5.1.3.3 Steels
5.2 Discontinuities
5.2.1 Porosity
5.2.2 Cracking
5.2.2.1 Hot Cracking
5.2.2.2 Liquation Cracking
5.2.2.3 Cold Cracking
5.2.3 Lack of Fusion
5.2.4 Incomplete Penetration
5.2.5 Undercut
5.3 Summary
References
Appendix 5A
Problems
6 Solidification
6.1 Solidification Without Flow
6.1.1 Solidification of a Pure Metal
6.1.2 Solidification of a Binary Alloy
6.1.2.1 Temperature and Concentration Variation in a Solidifying Alloy
6.1.2.2 Interface Stability Theories
6.1.2.3 Mushy Zone
6.2 Solidification with Flow
6.2.1 Mushy Fluid
6.2.2 Columnar Dendritic Structure
6.3 Rapid Solidification
6.4 Summary
References
Appendix 6A
Problems
7 Residual Stresses And Distortion
7.1 Causes of Residual Stresses
7.1.1 Thermal Stresses
7.1.2 Non-Uniform Plastic Deformation
7.2 Basic Stress Analysis
7.2.1 Stress-Strain Relations
7.2.1.1 Linear Elastic Behavior
7.2.1.2 Plastic Flow of Metals
7.2.2 Plane Stress and Plane Strain
7.2.2.1 Plane Stress
7.2.2.2 Plane Strain
7.2.2.3 Plane Stress/Plane Strain Equations
7.2.2.4 Compatibility Equation
7.2.2.5 Stress-Strain Relations for Plane Stress/Plane Strain
7.3 Effects of Residual Stresses
7.3.1 Apparent Change in Strength
7.3.2 Distortion
7.4 Measurement of Residual Stresses
7.4.1 Stress-Relaxation Techniques
7.4.1.1 Sectioning Technique
7.4.1.2 Drilling Technique
7.4.1.3 Strain Analysis
7.4.2 X-Ray Diffraction Technique
7.4.2.1 Principle of the X-Ray Diffraction Technique
7.4.2.2 The Film Technique
7.4.2.3 The Diffractometer Technique
7.4.3 Neutron Diffraction Technique
7.4.4 Residual Stress Equilibrium
7.5 Relief of Residual Stresses and Distortion
7.5.1 Thermal Treatments
7.5.1.1 Preheating
7.5.1.2 Post-Heating
7.5.1.3 Limitations of Thermal Stress Relief
7.5.2 Mechanical Treatments
7.5.2.1 Peening
7.5.2.2 Proof Stressing
7.5.2.3 Vibratory Stress Relief
7.6 Summary
References
Appendix 7A
Appendix 7B
Problems
PART III LASER MATERIALS PROCESSING
8 Background on Laser Processing
8.1 System-Related Parameters
8.1.1 Power and Power Density
8.1.2 Wavelength and Focusing
8.1.3 Beam Mode
8.1.4 Beam Form
8.1.5 Beam Quality
8.1.6 Beam Absorption
8.1.7 Beam Alignment
8.1.8 Motion Unit
8.2 Process Efficiency
8.3 Disturbances that Affect Process Quality
8.4 General Advantages and Disadvantages of Laser Processing
8.4.1 Advantages
8.4.2 Disadvantages
8.5 Summary
References
Appendix 8A
Problems
9 Laser Cutting And Drilling
9.1 Laser Cutting
9.1.1 Forms of Laser Cutting
9.1.1.1 Fusion Cutting
9.1.1.2 Sublimation Cutting
9.1.1.3 Photochemical Ablation
9.1.2 Components of a Laser Cutting System
9.1.3 Processing Conditions
9.1.3.1 Beam Power
9.1.3.2 Beam Characteristics
9.1.3.3 Traverse Speed
9.1.3.4 Assist Gas Functions
9.1.3.5 Effect of Focal Position
9.1.4 Laser Cutting Principles
9.1.4.1 Beam Absorption During Laser Cutting
9.1.4.2 Process Modeling
9.1.5 Quality of Cut Part
9.1.5.1 Striations of the Cut Surface
9.1.5.2 Dross Formation
9.1.6 Material Considerations
9.1.6.1 Metals
9.1.6.2 Nonmetals
9.1.7 Advantages and Disadvantages of Laser Cutting
9.1.7.1 Advantages
9.1.7.2 Disadvantages
9.1.8 Specific Comparison with Conventional Processes
9.1.8.1 Laser, Plasma-Arc, and Oxy-Acetylene (Oxy-Fuel) Cutting
9.1.8.2 Laser Cutting and Electrical Discharge Machining (Edm)
9.1.8.3 Laser Cutting and Abrasive Waterjet Machining
9.1.8.4 Laser Cutting and Punching/Nibbling
9.1.9 Special Techniques
9.2 Laser Drilling
9.2.1 Forms of Laser Drilling
9.2.1.1 Single-Pulse Drilling
9.2.1.2 Multi-Pulse Percussion Drilling
9.2.1.3 Trepanning
9.2.2 Process Parameters
9.2.2.1 Beam Characteristics
9.2.2.2 Drilling Characteristics
9.2.2.3 Process Defects
9.2.3 Analysis of Material Removal During Drilling
9.2.3.1 Basic Analysis
9.2.3.2 Approximate Analysis
9.2.4 Advantages and Disadvantages of Laser Drilling
9.2.4.1 Advantages
9.2.4.2 Disadvantages
9.2.5 Applications
9.3 New Developments
9.3.1 Micromachining
9.3.1.1 Transparent Dielectric Materials
9.3.1.2 Metals and Semiconductors
9.3.1.3 Micro-Explosions
9.3.1.4 Micromachining Applications
9.3.2 Laser Assisted Machining
9.4 Summary
References
Appendix 9A
Problems
10 Laser Welding
10.1 Laser Welding Parameters
10.1.1 Beam Power and Traverse Speed
10.1.2 Effect of Beam Characteristics
10.1.2.1 Beam Mode
10.1.2.2 Beam Stability
10.1.2.3 Beam Polarization
10.1.2.4 Pulsed Beams
10.1.3 Plasma Formation, Gas Shielding, and Effect of Ambient Pressure
10.1.3.1 Plasma Formation
10.1.3.2 Gas Shielding
10.1.3.3 Effect of Ambient Pressure
10.1.4 Beam Size and Focal Point Location
10.1.5 Joint Configuration
10.2 Welding Efficiency
10.3 Mechanism of Laser Welding
10.3.1 Conduction Mode Welding
10.3.2 Keyhole Welding
10.3.2.1 Power Absorption in the Keyhole
10.3.2.2 Keyhole Characteristics
10.4 Material Considerations
10.4.1 Steels
10.4.2 Non-Ferrous Alloys
10.4.3 Ceramic Materials
10.4.4 Dissimilar Metals
10.5 Weldment Discontinuities
10.5.1 Porosity
10.5.2 Humping
10.6 Advantages and Disadvantages of Laser Welding
10.6.1 Advantages
10.6.2 Disadvantages
10.7 Special Techniques
10.7.1 Multiple-Beam Welding
10.7.1.1 Multiple-Beam Preheating and Postheating
10.7.1.2 Multiple-Beam Flow Control
10.7.2 Arc-Augmented Laser Welding
10.7.3 Wobble Welding
10.7.4 Remote Laser Welding
10.8 Specific Applications
10.8.1 Microwelding
10.8.2 Laser Welded Tailored Blanks
10.8.2.1 Advantages of Tailored Blank Welding
10.8.2.2 Disadvantages of Tailored Blank Welding
10.8.2.3 Applications of Laser Welded Tailored Blanks
10.8.2.4 Formability of Tailor Welded Blanks
10.8.2.5 Limiting Thickness or Strength Ratio
10.8.3 Laser Transmission Welding of Plastics
10.8.4 Laser Brazing
10.8.4.1 Non-Autogenous Laser Brazing
10.8.4.2 Autogenous Laser Brazing
10.9 Summary
References
Appendix 10A
Problems
11 Laser Surface Modification
11.1 Laser Surface Heat Treatment
11.1.1 Important Criteria
11.1.2 Key Process Parameters
11.1.2.1 Beam Power, Size, Speed, and Shielding Gas
11.1.2.2 Beam Mode
11.1.2.3 Beam Absorption
11.1.2.4 Initial Workpiece Microstructure
11.1.3 Temperature Field
11.1.4 Microstructural Changes in Steels
11.1.4.1 Pearlite Dissolution
11.1.4.2 Austenite Homogenization
11.1.4.3 Transformation to Martensite
11.1.5 Non-Ferrous Alloys
11.1.5.1 Solution Treatment
11.1.5.2 Aging
11.1.6 Hardness Variation
11.1.7 Residual Stresses
11.1.8 Semiconductors
11.1.9 Polymers
11.1.10 Advantages and Disadvantages of Laser Surface Treatment
11.1.10.1 Advantages
11.1.10.2 Disadvantages
11.2 Laser Surface Melting
11.3 Laser Direct Metal Deposition
11.3.1 Processing Parameters
11.3.2 Methods for Depositing the Material
11.3.3 Dilution
11.3.4 Advantages and Disadvantages of Laser Deposition
11.3.4.1 Advantages
11.3.4.2 Disadvantages
11.4 Laser Physical Vapor Deposition (LPVD)
11.5 Laser Shock Peening
11.5.1 Background Analysis
11.5.2 Thermal Relaxation at High Temperatures
11.5.3 Advantages and Disadvantages of Laser Shock Peening
11.5.3.1 Advantages
11.5.3.2 Disadvantages
11.5.4 Applications
11.6 Laser Surface Texturing
11.7 Summary
References
Appendix 11A
Appendix 11B
Problems
12 Laser Forming
12.1 Principle of Laser Forming
12.2 Process Parameters
12.3 Laser Forming Mechanisms
12.3.1 Temperature Gradient Mechanism
12.3.2 Buckling Mechanism
12.3.3 Upsetting Mechanism
12.3.4 Summary of the Forming Mechanisms
12.4 Process Analysis
12.5 Advantages and Disadvantages
12.5.1 Advantages
12.5.2 Disadvantages
12.6 Applications
12.7 Summary
References
Appendix 12A
Problems
13 Additive Manufacturing
13.1 Computer-Aided Design
13.1.1 CurveaAnd Surface Design
13.1.1.1 Splines
13.1.1.2 Bezier Curves
13.1.1.3 Surface Representation
13.1.2 Solid Modeling
13.1.2.1 Constructive Solid Geometry (CSG)
13.1.2.2 Boundary Representation (BREP)
13.1.3 Software Formats
13.1.3.1 The STL Format
13.1.3.2 The IGES Format
13.1.4 Supports for Part Building
13.1.5 Slicing
13.2 Part Building
13.2.1 Liquid-Based Systems
13.2.1.1 Beam Scanning
13.2.1.2 Parallel Processing
13.2.1.3 Two-Photon Polymerization
13.2.2 Powder-Based Systems
13.2.2.1 Selective Laser Sintering (SLS)
13.2.2.2 Direct Metal Deposition (DMD)
13.2.2.3 Binder Jetting
13.2.3 Solid-Based Systems
13.2.3.1 Fused Deposition Modeling
13.2.3.2 Laminated Object Manufacturing
13.2.3.3 Wire Deposition
13.2.4 Qualitative Comparison of Some Major Systems
13.3 Post-Processing
13.4 Applications
13.4.1 Design
13.4.2 Engineering, Analysis, and Planning
13.4.3 Manufacturing and Tooling
13.4.4 Personalized Production
13.5 Advantages and Disadvantages
13.5.1 Advantages
13.5.2 Disadvantages
13.6 Summary
Reference
Appendix 13A
Problems
14 Medical and Nanotechnology Applications of Lasers
14.1 Medical Applications
14.1.1 Medical Devices
14.1.2 Therapeutic Applications
14.1.2.1 Surgical Procedures
14.1.2.2 Opthalmology
14.1.2.3 Dermatology
14.1.2.4 Dentistry
14.2 Nanotechnology Applications
14.2.1 Nanoholes and Grating
14.2.2 Nanobumps
14.2.3 Laser-Assisted Nanoimprint Lithography
14.3 Summary
References
15 Sensors for Process Monitoring
15.1 Laser Beam Monitoring
15.1.1 Beam Power
15.1.1.1 Pyroelectric or Thermopile Detector
15.1.1.2 Beam Dump
15.1.2 Beam Mode
15.1.2.1 Mechanical Methods
15.1.2.2 Camera-Based Methods
15.1.2.3 Approximate Methods
15.1.3 Beam Size
15.1.3.1 Kapton Film
15.1.3.2 Other Methods
15.2 Process Monitoring
15.2.1 Acoustic Emission (AE)
15.2.1.1 AE Detection
15.2.1.2 Background
15.2.1.3 AE Transmission
15.2.1.4 Traditional AE Signal Analysis
15.2.2 Acoustic Mirror
15.2.3 Audible Sound (AS) Emission
15.2.4 Infrared/Ultraviolet (IR/UV) Detection Techniques
15.2.4.1 Infrared Detection
15.2.4.2 Ultraviolet Detection
15.2.5 Optical (Vision) Sensing
15.2.5.1 Optical Detectors
15.2.5.2 Detector Set-Up
15.2.5.3 Edge Detection Methodology
15.3 Summary
References
Appendix 15A
Problems
16 Processing Of Sensor Outputs
16.1 Signal Transformation
16.1.1 The Fourier Transform
16.1.2 The Discrete Fourier Transform (Dft)
16.1.3 Pitfalls of Digital Analysis
16.1.4 The Sampling Theorem
16.1.5 Aliasing
16.1.6 Leakage
16.2 Data Reduction
16.2.1 Variance Criterion
16.2.2 Fisher Criterion
16.3 Pattern Classification
16.3.1 Pattern Recognition
16.3.1.1 Bayes Decision Theory
16.3.1.2 Bayes Decision Rule for Minimum Error
16.3.1.3 Discriminant Function Analysis
16.3.1.4 Least-Squares Minimum Distance Classification
16.3.1.5 System Training
16.3.2 Neural Network Analysis
16.3.2.1 Standard Neural Networks
16.3.2.2 Deep Learning Networks
16.3.3 Sensor Fusion
16.3.4 Time-Frequency Analysis
16.3.4.1 Short Time Fourier Transform
16.3.4.2 Wavelet Transforms
16.3.5 Applications in Manufacturing
16.4 Summary
References
Appendix 16A
Problems
17 Laser Safety
17.1 Laser Hazards
17.1.1 Radiation-Related Hazards
17.1.1.1 Mechanisms of Laser Damage
17.1.1.2 Major Hazards
17.1.2 Nonbeam Hazards
17.1.2.1 Electrical Hazards
17.1.2.2 Chemical Hazards
17.1.2.3 Environmental Hazards
17.1.2.4 Fire Hazards
17.1.2.5 Explosion Hazards and Compressed Gases
17.1.2.6 Other Hazards
17.2 Laser Classification
17.3 Preventing Laser Accidents
17.3.1 Laser Safety Officer (LSO)
17.3.2 Engineering Controls
17.3.3 Administrative and Procedural Controls
17.3.4 Protective Equipment
17.3.4.1 Protective Eyewear
17.3.4.2 Other Protective Equipment
17.3.5 Warning Signs and Labels
17.4 Summary
References
Appendix 17A
Problems















