logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Principles of Laser Materials Processing: Developments and Applications

Principles of Laser Materials Processing: Developments and Applications (Hardcover, 2)

Elijah Kannatey-asibu, Jr. (지은이)
John Wiley and Sons Ltd
296,000원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
242,720원 -18% 0원
12,140원
230,580원 >
222,380원 -21% 0원
카드할인 10%
22,238원
200,142원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Principles of Laser Materials Processing: Developments and Applications
eBook 미리보기

책 정보

· 제목 : Principles of Laser Materials Processing: Developments and Applications (Hardcover, 2) 
· 분류 : 외국도서 > 기술공학 > 기술공학 > 레이저/광기술
· ISBN : 9781119881605
· 쪽수 : 608쪽
· 출판일 : 2023-01-25

목차

Preface to First Edition

 

Preface to Second Edition

 

About the Companion Website

 

PART I PRINCIPLES OF INDUSTRIAL LASERS

 

1     Laser Background

 

                1.1     Laser Generation

                                1.1.1      Atomic Transitions

                                                1.1.1.1    Population Distribution   

1.1.1.2    Absorption   

1.1.1.3    Spontaneous Emission   

1.1.1.4    Stimulated Emission   

1.1.1.5    Einstein Coefficients: Ae, B12, B21   

1.1.2   Lifetime

1.1.3   Optical Absorption

1.1.4   Population Inversion

1.1.5   Threshold Gain

1.1.6   Two-Photon Absorption

                1.2     Optical Resonators

1.2.1  Standing Waves in a Rectangular Cavity

1.2.2   Planar Resonators

1.2.2.1   Beam Modes   

1.2.2.2   Line Selection   

1.2.2.3   Mode Selection   

1.2.3   Confocal Resonators

1.2.4   Concentric Resonators

                1.3     Laser Pumping

                                1.3.1  Optical Pumping

1.3.1.1   Arc or Flash Lamp Pumping   

1.3.1.2  Diode Laser Pumping   

                                1.3.2   Electrical Pumping

                1.4     System Levels

1.4.1  Two-Level System

1.4.2  Three-Level System

1.4.3  Four-Level System

                1.5     Broadening Mechanisms

1.5.1  Line-Shape Function

1.5.2  Line-Broadening Mechanisms

1.5.2.1   Homogeneous Broadening   

1.5.2.2   Inhomogeneous Broadening   

                                1.5.3   Comparison of Individual Mechanisms

                1.6     Beam Modification

                                1.6.1  Quality Factor

1.6.2   Q-Switching

1.6.3  Mode-Locking

                1.7     Beam Characteristics

1.7.1  Beam Divergence

1.7.2  Monochromaticity

1.7.3  Beam Coherence

1.7.3.1  Spatial Coherence   

1.7.3.2  Temporal Coherence   

1.7.4  Intensity and Brightness

1.7.5   Focusing

                1.8   Summary

References

Appendix 1A

Problems

 

2     Types Of Lasers

 

                2.1 Solid State Lasers

2.1.1      The Nd:YAG Laser  

2.1.2      The Nd:Glass Laser  

                2.2 Gas Lasers

2.2.1      Neutral Atom Lasers

2.2.2      Ion Lasers

2.2.4      Molecular Gas Lasers

2.2.4.1 Vibrational-Rotational Lasers          

2.2.4.2  Excimer Lasers   

                2.3 Semiconductor (Diode) Lasers

2.3.1      Semiconductor Background

2.3.2      Semiconductor Lasers

2.3.3 Semiconductor Laser Types

2.3.3.1 Homojunction Lasers    

2.3.3.2 Heterojunction Lasers    

2.3.3.3 Quantum Well Lasers  

2.3.4      Low Power Diode Lasers

2.3.5      High Power Diode Lasers

2.3.6      Applications of High Power Diode Lasers

                2.4 New Developments in Industrial Laser Technology

2.4.1      Slab Lasers

2.4.2      Disk Lasers

2.4.3      Ultrafast (Femtosecond) Lasers

2.4.4      Fiber Lasers

2.4.4.1 Pumping             

2.4.4.2 Pulsed Output  

2.4.4.3 CW Output   

 

2.4.4.4 Power Scaling   

2.4.4.5 Applications of Fiber Lasers  

2.4.4.6 Advantages of Fiber Lasers  

2.4.4.7 Disadvantages of Fiber Lasers  

                2.5  Summary

References

Appendix             2A

Appendix             2B

Appendix             2C

Problems

 

3     Beam Delivery

 

3.1 The Electromagnetic Spectrum

3.2 Birefringence

3.3 Brewster Angle

3.4 Polarization

3.5 Beam Expanders

3.6 Beam Splitters

3.7 Beam Delivery Systems

3.7.1      Conventional Beam Delivery

3.7.2 Fiber           Optic Systems

3.7.2.1 Optical Fiber Characteristics       

3.7.2.2 Waveguide Structure                    

3.7.2.3 Background       

3.7.2.4 Fiber Types             

3.7.2.5 Beam Degradation                

3.7.2.6 Application of Optical Fibers in High Power Laser Systems    

                3.8   Beam Shaping

                                3.8.1      Beam Shaping Using Diffractive Optics

3.8.1.1 Fresnel Phase Plate

3.8.1.2  Diffractive Optics Design

3.8.1.3  Beam Propagation After Diffraction

3.8.1.4 Diffractive Optical Element Construction

                                3.8.2   Beam Shaping Using Coherent Beam Combining and Optical Phase Array

3.9  Summary

References

Appendix             3A

Problems

 

PART II - ENGINEERING BACKGROUND

 

4     Heat And Fluid Flow

 

                4.1 Energy Balance During Processing

 

                4.2 Heat Flow in the Workpiece

                                4.2.1      Temperature Distribution

4.2.1.1 Thick Plate with Point Heat Source (Three-Dimensional)  

4.2.1.2 Thin Plate with Line Heat Source (Two Dimensional)  

4.2.2      Peak Temperatures

4.2.3      Cooling Rates

4.2.4      Gaussian Heat Source

4.2.5      The Two-Temperature Model

                4.3 Fluid Flow in Molten Pool

4.3.1      Continuity Equation

4.3.2      Navier-Stokes Equations

4.3.3      Surface Tension Effect

4.3.4      Free Surface Modeling

4.4  Summary

References

Appendix             4A

Appendix             4B           Derivation of Equation (4.2a)

Appendix             4C          Moving Heat Source

Appendix             4D

Appendix             4E

Appendix             4F

Appendix             4G

Problems

 

5     The Microstructure

 

                5.1          Process Microstructure

                                5.1.1      Fusion Zone

5.1.1.1 Initial Solidification        

5.1.1.2 Microstructure          

5.1.1.3 Nucleation and Grain Refinement in Molten Pool    

5.1.2      Zone of Partial Melting

5.1.3      Heat-Affected Zone

5.1.3.1                  Pure Metals

5.1.3.2 Precipitation-Hardening and Nonferrous Alloys                 

5.1.3.3                  Steels                                   

                5.2 Discontinuities

5.2.1      Porosity

5.2.2      Cracking

5.2.2.1 Hot Cracking      

5.2.2.2 Liquation Cracking                          

5.2.2.3 Cold Cracking    

5.2.3      Lack of Fusion

5.2.4      Incomplete Penetration

5.2.5      Undercut

5.3          Summary

References

Appendix             5A

Problems

 

6     Solidification

 

                6.1 Solidification Without Flow

6.1.1      Solidification of a Pure Metal

6.1.2      Solidification of a Binary Alloy

6.1.2.1 Temperature and Concentration Variation in a Solidifying Alloy                  

6.1.2.2                  Interface Stability Theories                         

6.1.2.3 Mushy Zone

                6.2 Solidification with Flow

6.2.1      Mushy Fluid

6.2.2      Columnar Dendritic Structure

6.3 Rapid Solidification

6.4 Summary

References

Appendix             6A

Problems

 

7     Residual Stresses And Distortion

                7.1 Causes of Residual Stresses

7.1.1      Thermal Stresses

7.1.2      Non-Uniform Plastic Deformation

                7.2 Basic Stress Analysis

                                7.2.1      Stress-Strain Relations

7.2.1.1 Linear Elastic Behavior  

7.2.1.2 Plastic Flow of Metals   

                                7.2.2 Plane Stress and Plane Strain

                                                7.2.2.1 Plane Stress                       

                                                7.2.2.2 Plane Strain                       

                                                7.2.2.3 Plane Stress/Plane Strain Equations        

                                                7.2.2.4 Compatibility Equation 

                                                7.2.2.5 Stress-Strain Relations for Plane Stress/Plane Strain        

                7.3 Effects of Residual Stresses

7.3.1      Apparent Change in Strength

7.3.2      Distortion

                7.4 Measurement of Residual Stresses

                                7.4.1      Stress-Relaxation Techniques

7.4.1.1 Sectioning Technique    

7.4.1.2 Drilling Technique                          

7.4.1.3  Strain Analysis  

                                7.4.2      X-Ray Diffraction Technique

7.4.2.1 Principle of the X-Ray Diffraction Technique        

7.4.2.2 The Film Technique                        

7.4.2.3 The Diffractometer Technique  

7.4.3      Neutron Diffraction Technique

7.4.4      Residual Stress Equilibrium         

                7.5  Relief of Residual Stresses and Distortion

                                7.5.1      Thermal Treatments

7.5.1.1  Preheating                         

7.5.1.2  Post-Heating                     

7.5.1.3  Limitations of Thermal Stress Relief        

                                7.5.2      Mechanical Treatments

7.5.2.1  Peening              

7.5.2.2  Proof Stressing 

7.5.2.3  Vibratory Stress Relief   

7.6          Summary

References

Appendix             7A

Appendix             7B

Problems

 

 

PART III    LASER MATERIALS PROCESSING

 

8                  Background on Laser Processing

 

                8.1  System-Related Parameters

8.1.1      Power and Power Density

8.1.2      Wavelength and Focusing

8.1.3      Beam Mode

8.1.4      Beam Form

8.1.5      Beam Quality

8.1.6      Beam Absorption            

8.1.7      Beam Alignment

8.1.8      Motion Unit

8.2  Process Efficiency

8.3  Disturbances that Affect Process Quality

8.4  General Advantages and Disadvantages of Laser Processing

8.4.1      Advantages

8.4.2      Disadvantages

8.5 Summary

References

Appendix             8A

Problems

 

9     Laser Cutting And Drilling

 

                9.1 Laser Cutting

                                9.1.1      Forms of Laser Cutting

9.1.1.1 Fusion Cutting  

9.1.1.2 Sublimation Cutting                       

9.1.1.3 Photochemical Ablation

9.1.2      Components of a Laser Cutting System  

9.1.3      Processing Conditions

9.1.3.1 Beam Power                     

9.1.3.2 Beam Characteristics                                                     

9.1.3.3 Traverse Speed

9.1.3.4 Assist Gas Functions                                                      

9.1.3.5 Effect of Focal Position 

                                9.1.4      Laser Cutting Principles

9.1.4.1 Beam Absorption During Laser Cutting   

9.1.4.2 Process Modeling                                           

                                9.1.5 Quality of Cut Part

9.1.5.1 Striations of the Cut Surface                       

9.1.5.2 Dross Formation              

                                9.1.6      Material Considerations

9.1.6.1 Metals                 

9.1.6.2 Nonmetals                         

                                9.1.7 Advantages and Disadvantages of Laser Cutting

9.1.7.1 Advantages                       

9.1.7.2 Disadvantages  

                                9.1.8      Specific Comparison with Conventional Processes

9.1.8.1 Laser, Plasma-Arc, and Oxy-Acetylene (Oxy-Fuel) Cutting              

9.1.8.2 Laser Cutting and Electrical Discharge Machining (Edm) 

9.1.8.3 Laser Cutting and Abrasive Waterjet Machining                 

9.1.8.4 Laser Cutting and Punching/Nibbling      

                                9.1.9      Special Techniques

                9.2 Laser Drilling

                                9.2.1      Forms of Laser Drilling

9.2.1.1 Single-Pulse Drilling                        

9.2.1.2 Multi-Pulse Percussion Drilling   

9.2.1.3 Trepanning        

                                9.2.2      Process Parameters

9.2.2.1 Beam Characteristics                     

9.2.2.2 Drilling Characteristics  

9.2.2.3 Process Defects

                                9.2.3      Analysis of Material Removal During Drilling

9.2.3.1 Basic Analysis   

9.2.3.2 Approximate Analysis   

                                9.2.4      Advantages and Disadvantages of Laser Drilling

9.2.4.1 Advantages       

9.2.4.2 Disadvantages  

                                9.2.5      Applications

                9.3 New Developments

 

                                9.3.1      Micromachining

9.3.1.1 Transparent Dielectric Materials                                 

9.3.1.2   Metals and Semiconductors                       

9.3.1.3 Micro-Explosions            

9.3.1.4 Micromachining Applications     

                                9.3.2      Laser Assisted Machining

9.4 Summary

References

Appendix             9A

Problems

 

10     Laser Welding

 

                10.1 Laser Welding Parameters

10.1.1   Beam Power and Traverse Speed

10.1.2   Effect of Beam Characteristics

10.1.2.1                Beam Mode                      

10.1.2.2                Beam Stability 

10.1.2.3                Beam Polarization           

10.1.2.4                Pulsed Beams                   

                                10.1.3   Plasma Formation, Gas Shielding, and Effect of Ambient Pressure

10.1.3.1                Plasma Formation           

10.1.3.2                Gas Shielding                    

10.1.3.3                Effect of Ambient Pressure         

10.1.4   Beam Size and Focal Point Location

10.1.5   Joint Configuration

10.2  Welding Efficiency

10.3 Mechanism of Laser Welding

10.3.1   Conduction Mode Welding

10.3.2   Keyhole Welding

10.3.2.1                Power Absorption in the Keyhole                                             

10.3.2.2                Keyhole Characteristics                

                10.4 Material Considerations

10.4.1   Steels

10.4.2   Non-Ferrous Alloys

10.4.3   Ceramic Materials

10.4.4   Dissimilar Metals

                10.5 Weldment Discontinuities

10.5.1   Porosity

10.5.2   Humping

                10.6 Advantages and Disadvantages of Laser Welding

10.6.1   Advantages

10.6.2   Disadvantages

                10.7 Special Techniques

                                10.7.1   Multiple-Beam Welding

10.7.1.1                Multiple-Beam Preheating and Postheating                        

10.7.1.2                Multiple-Beam Flow Control       

10.7.2   Arc-Augmented Laser Welding  

10.7.3   Wobble Welding              

10.7.4   Remote Laser Welding  

                10.8 Specific Applications

10.8.1  Microwelding

10.8.2   Laser Welded Tailored Blanks

10.8.2.1                Advantages of Tailored Blank Welding   

10.8.2.2                Disadvantages of Tailored Blank Welding                              

10.8.2.3                Applications of Laser Welded Tailored Blanks      

10.8.2.4                Formability of Tailor Welded Blanks        

10.8.2.5                Limiting Thickness or Strength Ratio        

10.8.3   Laser Transmission Welding of Plastics

10.8.4   Laser Brazing

10.8.4.1                Non-Autogenous Laser Brazing

10.8.4.2                Autogenous Laser Brazing

10.9 Summary

References

Appendix             10A

Problems

 

11     Laser Surface Modification

 

                11.1 Laser Surface Heat Treatment

11.1.1   Important Criteria

11.1.2   Key Process Parameters

11.1.2.1                Beam Power, Size, Speed, and Shielding Gas       

11.1.2.2                Beam Mode                      

11.1.2.3                Beam Absorption                            

11.1.2.4                Initial Workpiece Microstructure              

11.1.3   Temperature Field

11.1.4   Microstructural Changes in Steels

11.1.4.1                Pearlite Dissolution        

11.1.4.2                Austenite Homogenization                         

11.1.4.3                Transformation to Martensite   

                                11.1.5   Non-Ferrous Alloys                        

11.1.5.1                Solution Treatment                        

11.1.5.2                Aging                    

11.1.6   Hardness Variation

11.1.7   Residual Stresses

11.1.8   Semiconductors

11.1.9   Polymers

11.1.10 Advantages and Disadvantages of Laser Surface Treatment

11.1.10.1             Advantages                       

11.1.10.2             Disadvantages  

                11.2 Laser Surface Melting

 

                11.3 Laser Direct Metal Deposition

11.3.1   Processing Parameters

11.3.2   Methods for Depositing the Material

11.3.3   Dilution

11.3.4 Advantages and Disadvantages of Laser Deposition

11.3.4.1                Advantages       

11.3.4.2                Disadvantages  

11.4 Laser Physical Vapor Deposition (LPVD)

11.5 Laser Shock Peening

11.5.1   Background Analysis

11.5.2 Thermal Relaxation at High Temperatures

11.5.3   Advantages and Disadvantages of Laser Shock Peening

11.5.3.1                Advantages       

11.5.3.2                Disadvantages  

                                11.5.4   Applications

11.6 Laser Surface Texturing

11.7 Summary

References

Appendix             11A

Appendix             11B

Problems

 

12     Laser Forming

 

12.1 Principle of Laser Forming

12.2 Process Parameters

12.3 Laser Forming Mechanisms

12.3.1   Temperature Gradient Mechanism

12.3.2   Buckling Mechanism

12.3.3   Upsetting Mechanism

12.3.4   Summary of the Forming Mechanisms

12.4 Process Analysis

12.5 Advantages and Disadvantages

12.5.1   Advantages

12.5.2   Disadvantages

12.6 Applications

12.7  Summary

References

Appendix             12A

Problems

 

13     Additive Manufacturing

 

                13.1  Computer-Aided Design

                                13.1.1   CurveaAnd Surface Design

13.1.1.1                Splines 

13.1.1.2                Bezier Curves    

13.1.1.3                Surface Representation

                                13.1.2   Solid Modeling

13.1.2.1                Constructive Solid Geometry (CSG)                         

13.1.2.2                Boundary Representation (BREP)                             

                                13.1.3    Software Formats                          

13.1.3.1                The STL Format

13.1.3.2                The IGES Format              

13.1.4   Supports for Part Building

13.1.5   Slicing

                13.2       Part Building

                                13.2.1   Liquid-Based Systems

13.2.1.1                Beam Scanning 

13.2.1.2                Parallel Processing                         

13.2.1.3                Two-Photon Polymerization                       

                                13.2.2   Powder-Based Systems

13.2.2.1                Selective Laser Sintering (SLS)    

13.2.2.2                Direct Metal Deposition (DMD)

13.2.2.3                Binder Jetting   

                                13.2.3   Solid-Based Systems

13.2.3.1                Fused Deposition Modeling                        

13.2.3.2                Laminated Object Manufacturing             

13.2.3.3                Wire Deposition              

                                13.2.4   Qualitative Comparison of Some Major Systems

13.3 Post-Processing

13.4 Applications

13.4.1   Design

13.4.2   Engineering, Analysis, and Planning

13.4.3   Manufacturing and Tooling

13.4.4   Personalized Production

                13.5  Advantages and Disadvantages

13.5.1  Advantages

13.5.2  Disadvantages

13.6 Summary

Reference

Appendix             13A

Problems

 

14     Medical and Nanotechnology Applications of Lasers

 

                14.1 Medical Applications

14.1.1   Medical Devices

14.1.2   Therapeutic Applications

14.1.2.1                Surgical Procedures                       

14.1.2.2                Opthalmology                  

14.1.2.3                Dermatology                     

14.1.2.4                Dentistry            

                14.2 Nanotechnology Applications

14.2.1   Nanoholes and Grating

14.2.2   Nanobumps

14.2.3  Laser-Assisted Nanoimprint Lithography

14.3 Summary

References

 

15      Sensors for Process Monitoring

 

                15.1 Laser Beam Monitoring

                                15.1.1   Beam Power

15.1.1.1                Pyroelectric or Thermopile Detector                       

15.1.1.2                Beam Dump                      

                                15.1.2   Beam Mode

15.1.2.1                Mechanical Methods                    

15.1.2.2                Camera-Based Methods

15.1.2.3                Approximate Methods 

                                15.1.3   Beam Size

15.1.3.1                Kapton Film       

15.1.3.2                Other Methods

                15.2 Process Monitoring

                                15.2.1   Acoustic Emission (AE)

15.2.1.1                AE Detection                                     

15.2.1.2                Background                       

15.2.1.3                AE Transmission              

15.2.1.4                Traditional AE Signal Analysis                     

15.2.2   Acoustic Mirror

15.2.3   Audible Sound (AS) Emission

15.2.4   Infrared/Ultraviolet (IR/UV) Detection Techniques

15.2.4.1                Infrared Detection

15.2.4.2                Ultraviolet Detection                     

                                15.2.5   Optical (Vision) Sensing

15.2.5.1                Optical Detectors            

15.2.5.2                Detector Set-Up              

15.2.5.3                Edge Detection Methodology                    

15.3  Summary

References

Appendix             15A

Problems

 

16     Processing Of Sensor Outputs

 

                16.1 Signal Transformation

16.1.1   The Fourier Transform

16.1.2   The Discrete Fourier Transform (Dft)

16.1.3   Pitfalls of Digital Analysis

16.1.4   The Sampling Theorem

16.1.5   Aliasing

16.1.6    Leakage

                16.2 Data Reduction

16.2.1   Variance Criterion

16.2.2   Fisher Criterion

                16.3 Pattern Classification

                                16.3.1   Pattern Recognition

16.3.1.1                Bayes Decision Theory  

16.3.1.2                Bayes Decision Rule for Minimum Error 

16.3.1.3                Discriminant Function Analysis  

16.3.1.4                Least-Squares Minimum Distance Classification 

16.3.1.5                System Training

                                16.3.2   Neural Network Analysis

16.3.2.1                Standard Neural Networks                                         

16.3.2.2                Deep Learning Networks                                             

16.3.3   Sensor Fusion

16.3.4   Time-Frequency Analysis

16.3.4.1                Short Time Fourier Transform    

16.3.4.2                Wavelet Transforms                      

                                16.3.5   Applications in Manufacturing   

16.4  Summary

References

Appendix             16A

Problems

 

17     Laser Safety

 

                17.1 Laser Hazards

                                17.1.1    Radiation-Related Hazards

17.1.1.1                Mechanisms of Laser Damage                   

17.1.1.2                Major Hazards                  

                                17.1.2   Nonbeam Hazards

17.1.2.1                Electrical Hazards            

17.1.2.2                Chemical Hazards            

17.1.2.3                Environmental Hazards 

17.1.2.4                Fire Hazards                      

17.1.2.5                Explosion Hazards and Compressed Gases                           

17.1.2.6                Other Hazards  

17.2  Laser Classification

17.3  Preventing Laser Accidents

17.3.1   Laser Safety Officer (LSO)

17.3.2    Engineering Controls

17.3.3   Administrative and Procedural Controls

17.3.4   Protective Equipment

17.3.4.1                Protective Eyewear                        

17.3.4.2                Other Protective Equipment                      

                                17.3.5   Warning Signs and Labels

17.4 Summary

References

Appendix             17A

Problems

저자소개

Elijah Kannatey-asibu, Jr. (지은이)    정보 더보기
펼치기
이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책