logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

일간
|
주간
|
월간

실시간 검색어

검색가능 서점

도서목록 제공

Nonlinear System Identification: Narmax Methods in the Time, Frequency, and Spatio-Temporal Domains

Nonlinear System Identification: Narmax Methods in the Time, Frequency, and Spatio-Temporal Domains (Hardcover)

Stephen A. Billings (지은이)
John Wiley & Sons Inc
262,670원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
215,380원 -18% 0원
10,770원
204,610원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Nonlinear System Identification: Narmax Methods in the Time, Frequency, and Spatio-Temporal Domains
eBook 미리보기

책 정보

· 제목 : Nonlinear System Identification: Narmax Methods in the Time, Frequency, and Spatio-Temporal Domains (Hardcover) 
· 분류 : 외국도서 > 기술공학 > 기술공학 > 신호/신호처리
· ISBN : 9781119943594
· 쪽수 : 576쪽
· 출판일 : 2013-09-23

목차

Preface xv

1 Introduction 1

1.1 Introduction to System Identification 1

1.2 Linear System Identification 3

1.3 Nonlinear System Identification 5

1.4 NARMAX Methods 7

1.5 The NARMAX Philosophy 8

1.6 What is System Identification For? 9

1.7 Frequency Response of Nonlinear Systems 11

1.8 Continuous-Time, Severely Nonlinear, and Time-Varying Models and Systems 12

1.9 Spatio-temporal Systems 13

1.10 Using Nonlinear System Identification in Practice and Case Study Examples 13

References 14

2 Models for Linear and Nonlinear Systems 17

2.1 Introduction 17

2.2 Linear Models 18

2.3 Piecewise Linear Models 22

2.4 Volterra Series Models 30

2.5 Block-Structured Models 31

2.6 NARMAX Models 33

2.7 Generalised Additive Models 40

2.8 Neural Networks 41

2.9 Wavelet Models 45

2.10 State-Space Models 48

2.11 Extensions to the MIMO Case 49

2.12 Noise Modelling 49

2.13 Spatio-temporal Models 52

References 53

3 Model Structure Detection and Parameter Estimation 61

3.1 Introduction 61

3.2 The Orthogonal Least Squares Estimator and the Error Reduction Ratio 64

Representation 65

3.3 The Forward Regression OLS Algorithm 70

3.4 Term and Variable Selection 79

3.5 OLS and Sum of Error Reduction Ratios 80

3.6 Noise Model Identification 84

3.7 An Example of Variable and Term Selection for a Real Data Set 87

3.8 ERR is Not Affected by Noise 94

3.9 Common Structured Models to Accommodate Different Parameters 95

3.10 Model Parameters as a Function of Another Variable 98

3.11 OLS and Model Reduction 100

3.12 Recursive Versions of OLS 102

References 102

4 Feature Selection and Ranking 105

4.1 Introduction 105

4.2 Feature Selection and Feature Extraction 106

4.3 Principal Components Analysis 107

4.4 A Forward Orthogonal Search Algorithm 108

4.5 A Basis Ranking Algorithm Based on PCA 113

References 117

5 Model Validation 119

5.1 Introduction 119

5.2 Detection of Nonlinearity 121

5.3 Estimation and Test Data Sets 123

5.4 Model Predictions 124

5.5 Statistical Validation 127

5.6 Term Clustering 135

5.7 Qualitative Validation of Nonlinear Dynamic Models 137

References 145

6 The Identification and Analysis of Nonlinear Systems in the Frequency Domain 149

6.1 Introduction 149

6.2 Generalised Frequency Response Functions 151

6.3 Output Frequencies of Nonlinear Systems 184

6.4 Nonlinear Output Frequency Response Functions 191

6.5 Output Frequency Response Function of Nonlinear Systems 202

References 213

7 Design of Nonlinear Systems in the Frequency Domain – Energy Transfer Filters and Nonlinear Damping 217

7.1 Introduction 217

7.2 Energy Transfer Filters 218

7.3 Energy Focus Filters 240

7.4 OFRF-Based Approach for the Design of Nonlinear Systems in the Frequency Domain 249

References 259

8 Neural Networks for Nonlinear System Identification 261

8.1 Introduction 261

8.2 The Multi-layered Perceptron 263

8.3 Radial Basis Function Networks 264

8.4 Wavelet Networks 270

8.5 Multi-resolution Wavelet Models and Networks 277

References 284

9 Severely Nonlinear Systems 289

9.1 Introduction 289

9.2 Wavelet NARMAX Models 291

9.3 Systems that Exhibit Sub-harmonics and Chaos 301

9.4 The Response Spectrum Map 305

9.5 A Modelling Framework for Sub-harmonic and Severely Nonlinear Systems 313

9.6 Frequency Response Functions for Sub-harmonic Systems 320

9.7 Analysis of Sub-harmonic Systems and the Cascade to Chaos 326

References 334

10 Identification of Continuous-Time Nonlinear Models 337

10.1 Introduction 337

10.2 The Kernel Invariance Method 338

10.3 Using the GFRFs to Reconstruct Nonlinear Integro-differential Equation Models Without Differentiation 352

References 367

11 Time-Varying and Nonlinear System Identification 371

11.1 Introduction 371

11.2 Adaptive Parameter Estimation Algorithms 372

11.3 Tracking Rapid Parameter Variations Using Wavelets 376

11.4 Time-Dependent Spectral Characterisation 378

11.5 Nonlinear Time-Varying Model Estimation 380

11.6 Mapping and Tracking in the Frequency Domain 381

11.7 A Sliding Window Approach 388

References 389

12 Identification of Cellular Automata and N -State Models of Spatio-temporal Systems 391

12.1 Introduction 391

12.2 Cellular Automata 393

12.3 Identification of Cellular Automata 402

12.4 N -State Systems 414

References 427

13 Identification of Coupled Map Lattice and Partial Differential Equations of Spatio-temporal Systems 431

13.1 Introduction 431

13.2 Spatio-temporal Patterns and Continuous-State Models 432

13.3 Identification of Coupled Map Lattice Models 437

13.4 Identification of Partial Differential Equation Models 458

13.5 Nonlinear Frequency Response Functions for Spatio-temporal Systems 466

References 471

14 Case Studies 473

14.1 Introduction 473

14.2 Practical System Identification 474

14.3 Characterisation of Robot Behaviour 478

14.4 System Identification for Space Weather and the Magnetosphere 484

14.5 Detecting and Tracking Iceberg Calving in Greenland 493

14.6 Detecting and Tracking Time-Varying Causality for EEG Data 498

14.7 The Identification and Analysis of Fly Photoreceptors 505


14.8 Real-Time Diffuse Optical Tomography Using RBF Reduced-Order Models of the Propagation of Light for Monitoring Brain Haemodynamics 514

14.9 Identification of Hysteresis Effects in Metal Rubber Damping Devices 522

14.10 Identification of the Belousov–Zhabotinsky Reaction 528

14.11 Dynamic Modelling of Synthetic Bioparts 534

14.12 Forecasting High Tides in the Venice Lagoon 539

References 543

Index

저자소개

Stephen A. Billings (지은이)    정보 더보기
펼치기
이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책