logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

FUNDAMENTALS OF DATA SCIENCE

FUNDAMENTALS OF DATA SCIENCE (Hardcover)

WAGH (지은이)
Taylor & Francis
308,750원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
253,170원 -18% 0원
12,660원
240,510원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

FUNDAMENTALS OF DATA SCIENCE
eBook 미리보기

책 정보

· 제목 : FUNDAMENTALS OF DATA SCIENCE (Hardcover) 
· 분류 : 외국도서 > 언어학 > 문헌정보학 > 일반
· ISBN : 9781138336186
· 쪽수 : 296쪽
· 출판일 : 2021-09-27

목차

Part-I Data Science Introduction Importance of Data Science Need for Data Science What is Data Science Data Science Process Business Intelligence and Data Science Prerequisite for Data Scientist Components of Data Science Tools and Skills Need Summary Exercise References Statistics and Probability 2.1 Data Types 2.2. Variable Types 2.3 Statistics 2.4 Sampling Techniques and Probability 2.5 Information Gain and Entropy 2.6 Probability Theory 2.7 Probability Types 2.8 Probability Distribution 2.9 Bayes Theorem 2.10 Inferential Statistics 2.11 Summary Exercise References 3. Databases for Data Science 3.1 SQL-Tool for Data Science 3.1.1 Basic Statistics with SQL 3.1.2 Data Munging with SQL 3.1.3 Filtering, Joins and Aggregation 3.1.4 Window Functions and Ordered Data 3.1.5 Preparing Data for Analytics Tool 3.2 NoSQL for Data Science 3.2.1 Why NoSQL 3.2.2 Document databases for Data Science 3.2.3 Wide-Column Databases for Data Science 3.2.4 Graph Databases for Data Science 3.3 Summary Exercise References Part II Data Modelling and Analytics Chapter 4: Data Science Methodology 4.1 Analytics for Data Science 4.2 Data Analytics Examples 4.3 Data Analytics Life Cycle 4.3.1 Data Discovery 4.3.2 Data preparation 4.3.3 Model Planning 4.3.4 Model Building 4.3.5 Communicate Results 4.3.6 Operationalization 4.4 Summary Exercise References Chapter 5: Data Science Methods and Machine learning 5.1 Regression Analysis 5.1.1 Linear Regression 5.1.2 Logistic Regression 5.1.3 Multinomial Logistic Regression 5.1.4 Time Series Models 5.2 Machine Learning 5.2.1 Decision Trees 5.2.2 Naive Bayes 5.2.3 Support Vector Machines 5.2.4 Nearest Neighbour learning 5.2.5 Clustering 5.2.6 Confusion Matrix 5.3 Summary Exercise References Chapter 6: Data Analytics and Text Mining 6.1 Text Mining 6.1.1 Major Text Mining Areas 6.2 Text Analytics 6.2.1 Text Analysis Subtasks 6.2.2 Basic Text Analysis Steps 6.3 Natural Language Processing 6.3.1 Major Components of NLP 6.3.2 Stages of NLP 6.3.3 Statistical Processing of Natural Language 6.3.4 Applications of NLP 6.4 Summary Exercise References Part III: Platforms for Data Science Chapter 7: Data Science Tool: Python Basics Of Python Python libraries: Data Frame Manipulation with Pandas, Numpy Data Analysis Exploration With Python Time Series Data Clustering with Python Arch & Garch Dimensionality Reduction Python for Machine Learning Algorithms: KNN, Decision Tree, Random Forest, SVM Python IDEs for Data Science Summary Exercise References   Chapter 8: Data Science Tool: R 8.1 Reading and Getting Data into R 8.1.1 Reading Data into R 8.1.2 Writing Data into File 8.1.3 Scan() function 8.1.4 Built-in Datasets 8.2 Ordered and Unordered Factors 8.3 Arrays and Matrices 8.3.1 Arrays 8.3.2 Matrices 8.4 Lists and Data Frames 8.4.1 Lists 8.4.2 Data Frames 8.5 Probability Distributions 8.5.1 Normal Distribution 8.6 Statistical Models in R 8.6.1 Model Fitting 8.6.2 Marginal Effects 8.7 Manipulating Objects 8.7.1 Viewing Objects 8.7.2 Modifying Objects 8.7.3 Appending Elements 8.7.4 Deleting Objects 8.8 Data Distribution 8.8.1 Visualizing Distributions 8.8.2 Statistics in Distributions 8.9 Summary Exercise References   Chapter 9: Data Science Tool: MATLAB 9.1 Data Science Workflow and MATLAB 9.2 Importing Data 9.2.1 How Data is stored 9.2.2 How MATLAB Represents Data 9.2.3 MATLAB Data Types 9.2.4 Automating the Import Process 9.3 Visualizing and Filtering Data 9.3.1 Plotting Data Contained in Tables 9.3.2 Selecting Data from Tables 9.3.3 Accessing and Creating Table Variables 9.4 Performing Calculations 9.4.1 Basic Mathematical Operations 9.4.2 Using Vectors 9.4.3 Using Functions 9.4.4 Calculating Summary Statistics 9.4.5 Correlations between Variables 9.4.6 Accessing Subsets of Data 9.4.7 Performing Calculations by Category 9.5 Summary Exercise References   Chapter 10 : GNU Octave as a Data Science Tool 10.1 Vectors and Matrices 10.2 Arithmetic Operations 10.3 Set Operations 10.4 Plotting Data10.5 Summary Exercise References Chapter 11: Data Visualization using Tableau 11.1 Introduction to Data Visualization 11.2 Tableau Basics 11.3 Dimensions, Measures and Descriptive Statistics 11.4 Basic Charts 11.5 Dashboard Design & Principles 11.6 Special Chart Types 11.7 Integrate Tableau with Google Sheets 11.8 Summary Exercise References Index

저자소개

WAGH (지은이)    정보 더보기
펼치기
이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책