logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Hands-On Machine Learning with R

Hands-On Machine Learning with R (Hardcover, 1)

Brad Boehmke, Brandon M Greenwell (지은이)
Chapman and Hall/CRC
207,680원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
170,290원 -18% 0원
8,520원
161,770원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Hands-On Machine Learning with R
eBook 미리보기

책 정보

· 제목 : Hands-On Machine Learning with R (Hardcover, 1) 
· 분류 : 외국도서 > 경제경영 > 경제학/경제일반 > 계량경제학
· ISBN : 9781138495685
· 쪽수 : 488쪽
· 출판일 : 2019-11-11

목차

FUNDAMENTALS Introduction to Machine Learning Supervised learning Regression problems Classification problems Unsupervised learning Roadmap The data sets Modeling Process Prerequisites Data splitting Simple random sampling Stratified sampling Class imbalances Creating models in R Many formula interfaces Many engines Resampling methods Contents k-fold cross validation Bootstrapping Alternatives Bias variance trade-off Bias Variance Hyperparameter tuning Model evaluation Regression models Classification models Putting the processes together Feature & Target Engineering Prerequisites Target engineering Dealing with missingness Visualizing missing values Imputation Feature filtering Numeric feature engineering Skewness Standardization Categorical feature engineering Lumping One-hot & dummy encoding Label encoding Alternatives Dimension reduction Proper implementation Sequential steps Data leakage Putting the process together Contents v SUPERVISED LEARNING Linear Regression Prerequisites Simple linear regression Estimation Inference Multiple linear regression Assessing model accuracy Model concerns Principal component regression Partial least squares Feature interpretation Final thoughts Logistic Regression Prerequisites Why logistic regression Simple logistic regression Multiple logistic regression Assessing model accuracy Model concerns Feature interpretation Final thoughts Regularized Regression Prerequisites Why regularize? Ridge penalty Lasso penalty Elastic nets Implementation vi Contents Tuning Feature interpretation Attrition data Final thoughts Multivariate Adaptive Regression Splines Prerequisites The basic idea Multivariate regression splines Fitting a basic MARS model Tuning Feature interpretation Attrition data Final thoughts K-Nearest Neighbors Prerequisites Measuring similarity Distance measures Pre-processing Choosing k MNIST example Final thoughts Decision Trees Prerequisites Structure Partitioning How deep? Early stopping Pruning Ames housing example Contents vii Feature interpretation Final thoughts Bagging Prerequisites Why and when bagging works Implementation Easily parallelize Feature interpretation Final thoughts Random Forests Prerequisites Extending bagging Out-of-the-box performance Hyperparameters Number of trees mtry Tree complexity Sampling scheme Split rule Tuning strategies Feature interpretation Final thoughts Gradient Boosting Prerequisites How boosting works A sequential ensemble approach Gradient descent Basic GBM Hyperparameters viii Contents Implementation General tuning strategy Stochastic GBMs Stochastic hyperparameters Implementation XGBoost XGBoost hyperparameters Tuning strategy Feature interpretation Final thoughts Deep Learning Prerequisites Why deep learning Feedforward DNNs Network architecture Layers and nodes Activation Backpropagation Model training Model tuning Model capacity Batch normalization Regularization Adjust learning rate Grid Search Final thoughts Contents ix Support Vector Machines Prerequisites Optimal separating hyperplanes The hard margin classifier The soft margin classifier The support vector machine More than two classes Support vector regression Job attrition example Class weights Class probabilities Feature interpretation Final thoughts Stacked Models Prerequisites The Idea Common ensemble methods Super learner algorithm Available packages Stacking existing models Stacking a grid search Automated machine learning Final thoughts Interpretable Machine Learning Prerequisites The idea Global interpretation Local interpretation Model-specific vs. model-agnostic x Contents Permutation-based feature importance Concept Implementation Partial dependence Concept Implementation Alternative uses Individual conditional expectation Concept Implementation Feature interactions Concept Implementation Alternatives Local interpretable model-agnostic explanations Concept Implementation Tuning Alternative uses Shapley values Concept Implementation XGBoost and built-in Shapley values Localized step-wise procedure Concept Implementation Final thoughts DIMENSION REDUCTION Contents xi Principal Components Analysis Prerequisites The idea Finding principal components Performing PCA in R Selecting the number of principal components Eigenvalue criterion Proportion of variance explained criterion Scree plot criterion Final thoughts Generalized Low Rank Models Prerequisites The idea Finding the lower ranks Alternating minimization Loss functions Regularization Selecting k Fitting GLRMs in R Basic GLRM model Tuning to optimize for unseen data Final thoughts Autoencoders Prerequisites Undercomplete autoencoders Comparing PCA to an autoencoder Stacked autoencoders Visualizing the reconstruction Sparse autoencoders xii Contents Denoising autoencoders Anomaly detection Final thoughts CLUSTERING K-means Clustering Prerequisites Distance measures Defining clusters k-means algorithm Clustering digits How many clusters? Clustering with mixed data Alternative partitioning methods Final thoughts Hierarchical Clustering Prerequisites Hierarchical clustering algorithms Hierarchical clustering in R Agglomerative hierarchical clustering Divisive hierarchical clustering Determining optimal clusters Working with dendrograms Final thoughts Model-based Clustering Prerequisites Measuring probability and uncertainty Covariance types Model selection My basket example Final thoughts

저자소개

Brad Boehmke (지은이)    정보 더보기
펼치기
Brandon M Greenwell (지은이)    정보 더보기
펼치기
이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책